BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 18940807)

  • 1. Use of randomized sampling for analysis of metabolic networks.
    Schellenberger J; Palsson BØ
    J Biol Chem; 2009 Feb; 284(9):5457-61. PubMed ID: 18940807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics.
    Haiman ZB; Zielinski DC; Koike Y; Yurkovich JT; Palsson BO
    PLoS Comput Biol; 2021 Jan; 17(1):e1008208. PubMed ID: 33507922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing kinetic models of metabolism at genome-scales: A review.
    Srinivasan S; Cluett WR; Mahadevan R
    Biotechnol J; 2015 Sep; 10(9):1345-59. PubMed ID: 26332243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of Monte Carlo sampling methods for metabolic network models.
    Fallahi S; Skaug HJ; Alendal G
    PLoS One; 2020; 15(7):e0235393. PubMed ID: 32609776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting outcomes of steady-state ¹³C isotope tracing experiments using Monte Carlo sampling.
    Schellenberger J; Zielinski DC; Choi W; Madireddi S; Portnoy V; Scott DA; Reed JL; Osterman AL; Palsson B
    BMC Syst Biol; 2012 Jan; 6():9. PubMed ID: 22289253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.
    Schillings C; Sunnåker M; Stelling J; Schwab C
    PLoS Comput Biol; 2015 Aug; 11(8):e1004457. PubMed ID: 26317784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic modelling and analysis of biochemical networks: mechanism-based models and model-based experiments.
    van Riel NA
    Brief Bioinform; 2006 Dec; 7(4):364-74. PubMed ID: 17107967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uncertainty reduction in biochemical kinetic models: Enforcing desired model properties.
    Miskovic L; Béal J; Moret M; Hatzimanikatis V
    PLoS Comput Biol; 2019 Aug; 15(8):e1007242. PubMed ID: 31430276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formulation, construction and analysis of kinetic models of metabolism: A review of modelling frameworks.
    Saa PA; Nielsen LK
    Biotechnol Adv; 2017 Dec; 35(8):981-1003. PubMed ID: 28916392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uniform sampling of steady-state flux spaces: means to design experiments and to interpret enzymopathies.
    Price ND; Schellenberger J; Palsson BO
    Biophys J; 2004 Oct; 87(4):2172-86. PubMed ID: 15454420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistence in metabolic nets.
    De la Fuente IM; Benitez N; Santamaria A; Aguirregabiria JM; Veguillas J
    Bull Math Biol; 1999 May; 61(3):573-95. PubMed ID: 17883232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing the optimal flux space of genome-scale metabolic reconstructions through modified latin-hypercube sampling.
    Chaudhary N; Tøndel K; Bhatnagar R; dos Santos VA; Puchałka J
    Mol Biosyst; 2016 Mar; 12(3):994-1005. PubMed ID: 26818782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decomposing complex reaction networks using random sampling, principal component analysis and basis rotation.
    Barrett CL; Herrgard MJ; Palsson B
    BMC Syst Biol; 2009 Mar; 3():30. PubMed ID: 19267928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter estimation of in silico biological pathways with particle filtering towards a petascale computing.
    Nakamura K; Yoshida R; Nagasaki M; Miyano S; Higuchi T
    Pac Symp Biocomput; 2009; ():227-38. PubMed ID: 19209704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo sampling can be used to determine the size and shape of the steady-state flux space.
    Wiback SJ; Famili I; Greenberg HJ; Palsson BØ
    J Theor Biol; 2004 Jun; 228(4):437-47. PubMed ID: 15178193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From network models to network responses: integration of thermodynamic and kinetic properties of yeast genome-scale metabolic networks.
    Soh KC; Miskovic L; Hatzimanikatis V
    FEMS Yeast Res; 2012 Mar; 12(2):129-43. PubMed ID: 22129227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flux balance analysis: interrogating genome-scale metabolic networks.
    Oberhardt MA; Chavali AK; Papin JA
    Methods Mol Biol; 2009; 500():61-80. PubMed ID: 19399432
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elimination of thermodynamically infeasible loops in steady-state metabolic models.
    Schellenberger J; Lewis NE; Palsson BØ
    Biophys J; 2011 Feb; 100(3):544-553. PubMed ID: 21281568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction in the face of uncertainty: a Monte Carlo-based approach for systems biology of cancer treatment.
    Wierling C; Kühn A; Hache H; Daskalaki A; Maschke-Dutz E; Peycheva S; Li J; Herwig R; Lehrach H
    Mutat Res; 2012 Aug; 746(2):163-70. PubMed ID: 22285941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.