These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18941542)
41. Paradoxical effects of substitution and deletion mutation of Arg56 on the structure and chaperone function of human alphaB-crystallin. Biswas A; Goshe J; Miller A; Santhoshkumar P; Luckey C; Bhat MB; Nagaraj RH Biochemistry; 2007 Feb; 46(5):1117-27. PubMed ID: 17260942 [TBL] [Abstract][Full Text] [Related]
42. Evidence for specific subunit distribution and interactions in the quaternary structure of alpha-crystallin. Morris AM; Aquilina JA Proteins; 2010 Aug; 78(11):2546-53. PubMed ID: 20535821 [TBL] [Abstract][Full Text] [Related]
43. Protein-protein interactions between lens vimentin and alphaB-crystallin using FRET acceptor photobleaching. Song S; Hanson MJ; Liu BF; Chylack LT; Liang JJ Mol Vis; 2008 Jul; 14():1282-7. PubMed ID: 18618007 [TBL] [Abstract][Full Text] [Related]
44. Quaternary dynamics of αB-crystallin as a direct consequence of localised tertiary fluctuations in the C-terminus. Baldwin AJ; Hilton GR; Lioe H; Bagnéris C; Benesch JL; Kay LE J Mol Biol; 2011 Oct; 413(2):310-20. PubMed ID: 21839749 [TBL] [Abstract][Full Text] [Related]
45. αB-crystallin polydispersity is a consequence of unbiased quaternary dynamics. Baldwin AJ; Lioe H; Robinson CV; Kay LE; Benesch JL J Mol Biol; 2011 Oct; 413(2):297-309. PubMed ID: 21839090 [TBL] [Abstract][Full Text] [Related]
46. Dynamic subunit exchange and the regulation of microtubule assembly by the stress response protein human alphaB crystallin. Houck SA; Clark JI PLoS One; 2010 Jul; 5(7):e11795. PubMed ID: 20668689 [TBL] [Abstract][Full Text] [Related]
47. Significance of alpha-crystallin heteropolymer with a 3:1 alphaA/alphaB ratio: chaperone-like activity, structure and hydrophobicity. Srinivas PN; Reddy PY; Reddy GB Biochem J; 2008 Sep; 414(3):453-60. PubMed ID: 18479247 [TBL] [Abstract][Full Text] [Related]
48. Differential susceptibility of alpha A- and alpha B-crystallin to gamma-ray irradiation. Fujii N; Nakamura T; Sadakane Y; Saito T; Fujii N Biochim Biophys Acta; 2007 Mar; 1774(3):345-50. PubMed ID: 17258947 [TBL] [Abstract][Full Text] [Related]
50. Heat-induced conformational change of human lens recombinant alphaA- and alphaB-crystallins. Liang JJ; Sun TX; Akhtar NJ Mol Vis; 2000 Mar; 6():10-4. PubMed ID: 10706895 [TBL] [Abstract][Full Text] [Related]
51. The role of the conserved COOH-terminal triad in alphaA-crystallin aggregation and functionality. Li Y; Schmitz KR; Salerno JC; Koretz JF Mol Vis; 2007 Sep; 13():1758-68. PubMed ID: 17960114 [TBL] [Abstract][Full Text] [Related]
52. C-terminal interactions mediate the quaternary dynamics of αB-crystallin. Hilton GR; Hochberg GK; Laganowsky A; McGinnigle SI; Baldwin AJ; Benesch JL Philos Trans R Soc Lond B Biol Sci; 2013 May; 368(1617):20110405. PubMed ID: 23530258 [TBL] [Abstract][Full Text] [Related]
53. Influence of the C-terminal residues on oligomerization of alpha A-crystallin. Thampi P; Abraham EC Biochemistry; 2003 Oct; 42(40):11857-63. PubMed ID: 14529298 [TBL] [Abstract][Full Text] [Related]
54. Truncated human betaB1-crystallin shows altered structural properties and interaction with human betaA3-crystallin. Srivastava K; Gupta R; Chaves JM; Srivastava OP Biochemistry; 2009 Aug; 48(30):7179-89. PubMed ID: 19548648 [TBL] [Abstract][Full Text] [Related]
55. Tsp36, a tapeworm small heat-shock protein with a duplicated alpha-crystallin domain, forms dimers and tetramers with good chaperone-like activity. Kappé G; Aquilina JA; Wunderink L; Kamps B; Robinson CV; Garate T; Boelens WC; de Jong WW Proteins; 2004 Oct; 57(1):109-17. PubMed ID: 15326597 [TBL] [Abstract][Full Text] [Related]
56. The beta4-beta8 groove is an ATP-interactive site in the alpha crystallin core domain of the small heat shock protein, human alphaB crystallin. Ghosh JG; Houck SA; Doneanu CE; Clark JI J Mol Biol; 2006 Dec; 364(3):364-75. PubMed ID: 17022999 [TBL] [Abstract][Full Text] [Related]
57. The N-terminal domain of alphaB-crystallin is protected from proteolysis by bound substrate. Aquilina JA; Watt SJ Biochem Biophys Res Commun; 2007 Feb; 353(4):1115-20. PubMed ID: 17207466 [TBL] [Abstract][Full Text] [Related]
58. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Jehle S; Rajagopal P; Bardiaux B; Markovic S; Kühne R; Stout JR; Higman VA; Klevit RE; van Rossum BJ; Oschkinat H Nat Struct Mol Biol; 2010 Sep; 17(9):1037-42. PubMed ID: 20802487 [TBL] [Abstract][Full Text] [Related]
59. The interaction of Glu294 at the subunit interface is important for the activity and stability of goose delta-crystallin. Huang CW; Chen YH; Chen YH; Tsai YC; Lee HJ Mol Vis; 2009 Nov; 15():2358-63. PubMed ID: 19936305 [TBL] [Abstract][Full Text] [Related]
60. Substituted hydrophobic and hydrophilic residues at methionine-68 influence the chaperone-like function of alphaB-crystallin. Shroff NP; Bera S; Cherian-Shaw M; Abraham EC Mol Cell Biochem; 2001 Apr; 220(1-2):127-33. PubMed ID: 11451372 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]