These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 18941679)

  • 1. Rapid fluidic exchange microsystem for recording of fast ion channel kinetics in Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Lab Chip; 2008 Nov; 8(11):1809-18. PubMed ID: 18941679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated microsystem for non-invasive electrophysiological measurements on Xenopus oocytes.
    Dahan E; Bize V; Lehnert T; Horisberger JD; Gijs MA
    Biosens Bioelectron; 2007 Jun; 22(12):3196-202. PubMed ID: 17416513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-electrode voltage clamp.
    Guan B; Chen X; Zhang H
    Methods Mol Biol; 2013; 998():79-89. PubMed ID: 23529422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CFTR fails to inhibit the epithelial sodium channel ENaC expressed in Xenopus laevis oocytes.
    Nagel G; Barbry P; Chabot H; Brochiero E; Hartung K; Grygorczyk R
    J Physiol; 2005 May; 564(Pt 3):671-82. PubMed ID: 15746174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain-of-function mutations in the MEC-4 DEG/ENaC sensory mechanotransduction channel alter gating and drug blockade.
    Brown AL; Fernandez-Illescas SM; Liao Z; Goodman MB
    J Gen Physiol; 2007 Feb; 129(2):161-73. PubMed ID: 17261841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variable ratio of permeability to gating charge of rBIIA sodium channels and sodium influx in Xenopus oocytes.
    Greeff NG; Kühn FJ
    Biophys J; 2000 Nov; 79(5):2434-53. PubMed ID: 11053121
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage clamp recordings from Xenopus oocytes.
    Dascal N
    Curr Protoc Neurosci; 2001 May; Chapter 6():Unit 6.12. PubMed ID: 18428511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels.
    Schaffhauser DF; Andrini O; Ghezzi C; Forster IC; Franco-Obregón A; Egli M; Dittrich PS
    Lab Chip; 2011 Oct; 11(20):3471-8. PubMed ID: 21870012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patch-Clamp and Perfusion Techniques to Study Ion Channels Expressed in
    Zhang G; Cui J
    Cold Spring Harb Protoc; 2018 Apr; 2018(4):pdb.prot099051. PubMed ID: 29382809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cyclosporin A and deltamethrin block the downregulation of Nav1.8 sodium channels expressed in Xenopus oocytes.
    Choi JS; Soderlund DM
    Neurosci Lett; 2004 Sep; 367(3):389-93. PubMed ID: 15337272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependent block of rat Nav1.4 sodium channels expressed in xenopus oocytes by pyrazoline-type insecticides.
    Silver K; Soderlund DM
    Neurotoxicology; 2005 Jun; 26(3):397-406. PubMed ID: 15935211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recording Sodium Self-Inhibition of Epithelial Sodium Channels Using Automated Electrophysiology in
    Lawong RY; May F; Etang EC; Vorrat P; George J; Weder J; Kockler D; Preller M; Althaus M
    Membranes (Basel); 2023 May; 13(5):. PubMed ID: 37233590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuations in Xenopus oocytes protein phosphorylation levels during two-electrode voltage clamp measurements.
    Cohen A; Zilberberg N
    J Neurosci Methods; 2006 May; 153(1):62-70. PubMed ID: 16293314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulation of epithelial sodium channel activity by the sulfonylurea glibenclamide.
    Chrabi A; Horisberger JD
    J Pharmacol Exp Ther; 1999 Jul; 290(1):341-7. PubMed ID: 10381797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion channel pharmacology under flow: automation via well-plate microfluidics.
    Spencer CI; Li N; Chen Q; Johnson J; Nevill T; Kammonen J; Ionescu-Zanetti C
    Assay Drug Dev Technol; 2012 Aug; 10(4):313-24. PubMed ID: 22574656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of voltage and extracellular Na(+) on amiloride block and transport kinetics of rat epithelial Na(+) channel expressed in Xenopus oocytes.
    Segal A; Awayda MS; Eggermont J; Van Driessche W; Weber WM
    Pflugers Arch; 2002 Mar; 443(5-6):882-91. PubMed ID: 11889589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Xenopus oocyte cut-open vaseline gap voltage-clamp technique with fluorometry.
    Rudokas MW; Varga Z; Schubert AR; Asaro AB; Silva JR
    J Vis Exp; 2014 Mar; (85):. PubMed ID: 24637712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophysiological Characterization of Na,K-ATPases Expressed in Xenopus laevis Oocytes Using Two-Electrode Voltage Clamping.
    Hilbers F; Poulsen H
    Methods Mol Biol; 2016; 1377():305-18. PubMed ID: 26695042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated higher-throughput compound screening on ion channel targets based on the Xenopus laevis oocyte expression system.
    Pehl U; Leisgen C; Gampe K; Guenther E
    Assay Drug Dev Technol; 2004 Oct; 2(5):515-24. PubMed ID: 15671649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconstitution of synaptic Ion channels from rodent and human brain in Xenopus oocytes: a biochemical and electrophysiological characterization.
    Mazzo F; Zwart R; Serratto GM; Gardinier KM; Porter W; Reel J; Maraula G; Sher E
    J Neurochem; 2016 Aug; 138(3):384-96. PubMed ID: 27216696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.