BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 18941910)

  • 1. Automated CT-based analysis to detect changes in the prevalence of lytic bone metastases from breast cancer.
    Skrinskas T; Clemons M; Freedman O; Weller I; Whyne CM
    Clin Exp Metastasis; 2009; 26(2):97-103. PubMed ID: 18941910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative characterization of metastatic disease in the spine. Part II. Histogram-based analyses.
    Whyne C; Hardisty M; Wu F; Skrinskas T; Clemons M; Gordon L; Basran PS
    Med Phys; 2007 Aug; 34(8):3279-85. PubMed ID: 17879791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noninvasive Failure Load Prediction of Vertebrae with Simulated Lytic Defects and Biomaterial Augmentation.
    Giambini H; Fang Z; Zeng H; Camp JJ; Yaszemski MJ; Lu L
    Tissue Eng Part C Methods; 2016 Aug; 22(8):717-24. PubMed ID: 27260559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathoanatomical and radiographic findings in spinal breast cancer metastases.
    Jónsson B; Petrén-Mallmin M; Jónsson H; Andréasson I; Rauschning W
    J Spinal Disord; 1995 Feb; 8(1):26-38. PubMed ID: 7711367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volume of Lytic Vertebral Body Metastatic Disease Quantified Using Computed Tomography-Based Image Segmentation Predicts Fracture Risk After Spine Stereotactic Body Radiation Therapy.
    Thibault I; Whyne CM; Zhou S; Campbell M; Atenafu EG; Myrehaug S; Soliman H; Lee YK; Ebrahimi H; Yee AJ; Sahgal A
    Int J Radiat Oncol Biol Phys; 2017 Jan; 97(1):75-81. PubMed ID: 27843032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Hormone Receptor Status on Spinal Metastatic Lesions in Patients with Breast Cancer.
    Lin J; Goldstein L; Nesbit A; Chen MY
    World Neurosurg; 2016 Jan; 85():42-8. PubMed ID: 26260940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The remineralization of the vertebral metastases of breast carcinoma after radiotherapy].
    Wachenfeld I; Sanner G; Böttcher HD; Kollath J
    Strahlenther Onkol; 1996 Jun; 172(6):332-41. PubMed ID: 8677507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Diagnostic imaging of bone metastases].
    Scutellari PN; Addonisio G; Righi R; Giganti M
    Radiol Med; 2000 Dec; 100(6):429-35. PubMed ID: 11307503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bone metastases in breast cancer: higher prevalence of osteosclerotic lesions.
    Quattrocchi CC; Piciucchi S; Sammarra M; Santini D; Vincenzi B; Tonini G; Grasso RF; Zobel BB
    Radiol Med; 2007 Oct; 112(7):1049-59. PubMed ID: 17952675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Positron emission tomography and bone metastases.
    Fogelman I; Cook G; Israel O; Van der Wall H
    Semin Nucl Med; 2005 Apr; 35(2):135-42. PubMed ID: 15765376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Computer tomography in bone metastases].
    Skjłdt T; Svendsen J; Bertelsen V
    Rontgenblatter; 1985 Nov; 38(11):342-4. PubMed ID: 3001916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical and experimental imaging of breast cancer metastases in the spine.
    Petrén-Mallmin M
    Acta Radiol Suppl; 1994; 391():1-23. PubMed ID: 8172006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of the effect of osteolytic metastases on bone strain within whole vertebrae using image registration.
    Hardisty MR; Akens MK; Hojjat SP; Yee A; Whyne CM
    J Orthop Res; 2012 Jul; 30(7):1032-9. PubMed ID: 22213180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic detection of lytic and blastic thoracolumbar spine metastases on computed tomography.
    Hammon M; Dankerl P; Tsymbal A; Wels M; Kelm M; May M; Suehling M; Uder M; Cavallaro A
    Eur Radiol; 2013 Jul; 23(7):1862-70. PubMed ID: 23397381
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CT fluoroscopy-guided percutaneous osteoplasty for the treatment of osteolytic lung cancer bone metastases to the spine and pelvis.
    Wang Z; Zhen Y; Wu C; Li H; Yang Y; Shen Z; Zhao H; Yao Y
    J Vasc Interv Radiol; 2012 Sep; 23(9):1135-42. PubMed ID: 22920977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative characterization of metastatic disease in the spine. Part I. Semiautomated segmentation using atlas-based deformable registration and the level set method.
    Hardisty M; Gordon L; Agarwal P; Skrinskas T; Whyne C
    Med Phys; 2007 Aug; 34(8):3127-34. PubMed ID: 17879773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Longitudinal Computed Tomography Monitoring of Pelvic Bones in Patients With Breast Cancer Using Automated Bone Subtraction Software.
    Horger M; Thaiss WM; Wiesinger B; Ditt H; Fritz J; Nikolaou K; Kloth C
    Invest Radiol; 2017 Feb; 52(2):288-294. PubMed ID: 28002240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of bone scintigraphy and 18F-FDG PET-CT in a prostate cancer patient with osteolytic bone metastases.
    Ozcan Kara P; Kara T; Kara Gedik G; Sari O; Sahin O
    Rev Esp Med Nucl; 2011; 30(2):94-6. PubMed ID: 21342722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multimodality imaging for vertebral metastases in a rat osteolytic model.
    Burch S; Bisland SK; Wilson BC; Whyne C; Yee AJ
    Clin Orthop Relat Res; 2007 Jan; 454():230-6. PubMed ID: 16924176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thoracic Temporal Subtraction Three Dimensional Computed Tomography (3D-CT): Screening for Vertebral Metastases of Primary Lung Cancers.
    Iwano S; Ito R; Umakoshi H; Karino T; Inoue T; Li Y; Naganawa S
    PLoS One; 2017; 12(1):e0170309. PubMed ID: 28095493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.