These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 18942734)
1. An efficient grid-based scheme to compute QTAIM atomic properties without explicit calculation of zero-flux surfaces. Rodríguez JI; Köster AM; Ayers PW; Santos-Valle A; Vela A; Merino G J Comput Chem; 2009 May; 30(7):1082-92. PubMed ID: 18942734 [TBL] [Abstract][Full Text] [Related]
2. A fast and accurate algorithm for QTAIM integration in solids. Otero-de-la-Roza A; Luaña V J Comput Chem; 2011 Jan; 32(2):291-305. PubMed ID: 20645302 [TBL] [Abstract][Full Text] [Related]
3. Dipole and quadrupole moments of molecules in crystals: a novel approach based on integration over Hirshfeld surfaces. Whitten AE; Radford CJ; McKinnon JJ; Spackman MA J Chem Phys; 2006 Feb; 124(7):74106. PubMed ID: 16497029 [TBL] [Abstract][Full Text] [Related]
4. Virial theorem in the Kohn-Sham density-functional theory formalism: accurate calculation of the atomic quantum theory of atoms in molecules energies. Rodríguez JI; Ayers PW; Götz AW; Castillo-Alvarado FL J Chem Phys; 2009 Jul; 131(2):021101. PubMed ID: 19603962 [TBL] [Abstract][Full Text] [Related]
5. Numerical integration of exchange-correlation energies and potentials using transformed sparse grids. Rodríguez JI; Thompson DC; Ayers PW; Köster AM J Chem Phys; 2008 Jun; 128(22):224103. PubMed ID: 18554002 [TBL] [Abstract][Full Text] [Related]
6. Grid-based energy density analysis: implementation and assessment. Imamura Y; Takahashi A; Nakai H J Chem Phys; 2007 Jan; 126(3):034103. PubMed ID: 17249861 [TBL] [Abstract][Full Text] [Related]
8. QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives. Silva AF; da Silva JV; Haiduke RL; Bruns RE J Phys Chem A; 2011 Nov; 115(45):12572-81. PubMed ID: 21736290 [TBL] [Abstract][Full Text] [Related]
9. Improved grid-based algorithm for Bader charge allocation. Sanville E; Kenny SD; Smith R; Henkelman G J Comput Chem; 2007 Apr; 28(5):899-908. PubMed ID: 17238168 [TBL] [Abstract][Full Text] [Related]
10. Accurate and efficient algorithm for Bader charge integration. Yu M; Trinkle DR J Chem Phys; 2011 Feb; 134(6):064111. PubMed ID: 21322665 [TBL] [Abstract][Full Text] [Related]
11. A grid-based Bader analysis algorithm without lattice bias. Tang W; Sanville E; Henkelman G J Phys Condens Matter; 2009 Feb; 21(8):084204. PubMed ID: 21817356 [TBL] [Abstract][Full Text] [Related]
12. Optimal grids for generalized finite basis and discrete variable representations: definition and method of calculation. Szalay V J Chem Phys; 2006 Oct; 125(15):154115. PubMed ID: 17059247 [TBL] [Abstract][Full Text] [Related]
13. Generalized energy-based fragmentation approach for computing the ground-state energies and properties of large molecules. Li W; Li S; Jiang Y J Phys Chem A; 2007 Mar; 111(11):2193-9. PubMed ID: 17388268 [TBL] [Abstract][Full Text] [Related]
14. A reversible minimum-to-minimum mapping method for the calculation of free-energy differences. Theodorou DN J Chem Phys; 2006 Jan; 124(3):034109. PubMed ID: 16438569 [TBL] [Abstract][Full Text] [Related]
15. Atomic charges, dipole moments, and Fukui functions using the Hirshfeld partitioning of the electron density. De Proft F; Van Alsenoy C; Peeters A; Langenaeker W; Geerlings P J Comput Chem; 2002 Sep; 23(12):1198-209. PubMed ID: 12116389 [TBL] [Abstract][Full Text] [Related]
16. Fully analytical integration over the 3D volume bounded by the β sphere in topological atoms. Popelier PL J Phys Chem A; 2011 Nov; 115(45):13169-79. PubMed ID: 21978204 [TBL] [Abstract][Full Text] [Related]
17. A general and efficient pseudopotential Fourier filtering scheme for real space methods using mask functions. Tafipolsky M; Schmid R J Chem Phys; 2006 May; 124(17):174102. PubMed ID: 16689562 [TBL] [Abstract][Full Text] [Related]
18. QTAIM charge-charge flux-dipole flux models for the infrared fundamental intensities of the fluorochloromethanes. da Silva JV; Haiduke RL; Bruns RE J Phys Chem A; 2006 Apr; 110(14):4839-45. PubMed ID: 16599453 [TBL] [Abstract][Full Text] [Related]