These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 18943058)
1. Dehydrodimers of Ferulic Acid in Maize Grain Pericarp and Aleurone: Resistance Factors to Fusarium graminearum. Bily AC; Reid LM; Taylor JH; Johnston D; Malouin C; Burt AJ; Bakan B; Regnault-Roger C; Pauls KP; Arnason JT; Philogène BJ Phytopathology; 2003 Jun; 93(6):712-9. PubMed ID: 18943058 [TBL] [Abstract][Full Text] [Related]
2. Phenolics in maize genotypes differing in susceptibility to Gibberella stalk rot (Fusarium graminearum Schwabe). Santiago R; Reid LM; Arnason JT; Zhu X; Martinez N; Malvar RA J Agric Food Chem; 2007 Jun; 55(13):5186-93. PubMed ID: 17547419 [TBL] [Abstract][Full Text] [Related]
3. Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Mohammadi M; Anoop V; Gleddie S; Harris LJ Proteomics; 2011 Sep; 11(18):3675-84. PubMed ID: 21751381 [TBL] [Abstract][Full Text] [Related]
4. In Search of Resistance Against Fusarium Ear Rot: Ferulic Acid Contents in Maize Pericarp Are Associated With Antifungal Activity and Inhibition of Fumonisin Production. Martínez-Fraca J; de la Torre-Hernández ME; Meshoulam-Alamilla M; Plasencia J Front Plant Sci; 2022; 13():852257. PubMed ID: 35463425 [No Abstract] [Full Text] [Related]
5. The influence of fusarium ear infection on the maize yield and quality (Transylvania-Romania). Nagy E; Voichiţa H; Kadar R Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):1147-50. PubMed ID: 17390871 [TBL] [Abstract][Full Text] [Related]
6. The feruloyl esterase gene family of Fusarium graminearum is differentially regulated by aromatic compounds and hosts. Balcerzak M; Harris LJ; Subramaniam R; Ouellet T Fungal Biol; 2012 Apr; 116(4):478-88. PubMed ID: 22483046 [TBL] [Abstract][Full Text] [Related]
7. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride. Naef A; Zesiger T; Défago G J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384 [TBL] [Abstract][Full Text] [Related]
8. Genetic diversity and trichothecene chemotypes of the Fusarium graminearum clade isolated from maize in Nepal and identification of a putative new lineage. Desjardins AE; Proctor RH Fungal Biol; 2011 Jan; 115(1):38-48. PubMed ID: 21215953 [TBL] [Abstract][Full Text] [Related]
9. Pre-harvest accumulation of deoxynivalenol in sweet corn ears inoculated with Fusarium graminearum. Reid LM; Zhu X; Savard ME; Sinha RC; Vigier B Food Addit Contam; 2000 Aug; 17(8):689-701. PubMed ID: 11027030 [TBL] [Abstract][Full Text] [Related]
10. Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation. Reid LM; Nicol RW; Ouellet T; Savard M; Miller JD; Young JC; Stewart DW; Schaafsma AW Phytopathology; 1999 Nov; 89(11):1028-37. PubMed ID: 18944658 [TBL] [Abstract][Full Text] [Related]
11. Role of hydroxycinnamic acids in the infection of maize silks by Fusarium graminearum Schwabe. Cao A; Reid LM; Butrón A; Malvar RA; Souto XC; Santiago R Mol Plant Microbe Interact; 2011 Sep; 24(9):1020-6. PubMed ID: 21635140 [TBL] [Abstract][Full Text] [Related]
12. Sources of resistance to fumonisin accumulation in grain and fusarium ear and kernel rot of corn. Clements MJ; Maragos CM; Pataky JK; White DG Phytopathology; 2004 Mar; 94(3):251-60. PubMed ID: 18943973 [TBL] [Abstract][Full Text] [Related]
13. Possible role of plant phenolics in the production of trichothecenes by Fusarium graminearum strains on different fractions of maize kernels. Bakan B; Bily AC; Melcion D; Cahagnier B; Regnault-Roger C; Philogène BJ; Richard-Molard D J Agric Food Chem; 2003 Apr; 51(9):2826-31. PubMed ID: 12696980 [TBL] [Abstract][Full Text] [Related]
14. Stability of Hybrid Maize Reaction to Gibberella Ear Rot and Deoxynivalenol Contamination of Grain. Lana FD; Paul PA; Minyo R; Thomison P; Madden LV Phytopathology; 2020 Dec; 110(12):1908-1922. PubMed ID: 32689899 [TBL] [Abstract][Full Text] [Related]
15. Effect of salicylic acid on Fusarium graminearum, the major causal agent of fusarium head blight in wheat. Qi PF; Johnston A; Balcerzak M; Rocheleau H; Harris LJ; Long XY; Wei YM; Zheng YL; Ouellet T Fungal Biol; 2012 Mar; 116(3):413-26. PubMed ID: 22385623 [TBL] [Abstract][Full Text] [Related]
16. Impact of Gibberella Ear Rot on Grain Quality and Yield Components in Maize as Influenced by Hybrid Reaction. Lana FD; Madden LV; Carvalho CP; Paul PA Plant Dis; 2022 Dec; 106(12):3061-3075. PubMed ID: 35536201 [TBL] [Abstract][Full Text] [Related]
17. Is catalase activity one of the factors associated with maize resistance to Aspergillus flavus? Magbanua ZV; De Moraes CM; Brooks TD; Williams WP; Luthe DS Mol Plant Microbe Interact; 2007 Jun; 20(6):697-706. PubMed ID: 17555277 [TBL] [Abstract][Full Text] [Related]
18. Inhibition of non-enzymatic glycation by silk extracts from a Mexican land race and modern inbred lines of maize (Zea mays). Farsi DA; Harris CS; Reid L; Bennett SA; Haddad PS; Martineau LC; Arnason JT Phytother Res; 2008 Jan; 22(1):108-12. PubMed ID: 17724765 [TBL] [Abstract][Full Text] [Related]
19. Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). Santiago R; Butrón A; Reid LM; Arnason JT; Sandoya G; Souto XC; Malvar RA J Agric Food Chem; 2006 Nov; 54(24):9140-4. PubMed ID: 17117802 [TBL] [Abstract][Full Text] [Related]