These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18943236)

  • 21. Spatiotemporal spread of cucurbit downy mildew in the eastern United States.
    Ojiambo PS; Holmes GJ
    Phytopathology; 2011 Apr; 101(4):451-61. PubMed ID: 21117875
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal Attributes and Crop Loss Associated with Tan Spot Epidemics in Baby Lima Bean in New York.
    Pethybridge SJ; Hay FS; Gorny A; Kikkert JR
    Plant Dis; 2018 Feb; 102(2):405-412. PubMed ID: 30673518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans.
    Ghanbarnia K; Dilantha Fernando WG; Crow G
    Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biocontrol agents efficiently inhibit sporulation of Botrytis aclada on necrotic leaf tips but spread to adjacent living tissue is not prevented.
    Yohalem DS; Nielsen K; Green H; Funck Jensen D
    FEMS Microbiol Ecol; 2004 Mar; 47(3):297-303. PubMed ID: 19712318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 1998 Oct; 88(10):1000-12. PubMed ID: 18944811
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship of Airborne Botrytis cinerea Conidium Concentration to Tomato Flower and Stem Infections: A Threshold for De-leafing Operations.
    Carisse O; Van der Heyden H
    Plant Dis; 2015 Jan; 99(1):137-142. PubMed ID: 30699735
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial and spatiotemporal pattern analysis of coconut lethal yellowing in Mozambique.
    Bonnot F; de Franqueville H; Lourenço E
    Phytopathology; 2010 Apr; 100(4):300-12. PubMed ID: 20205533
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Evaluation of the effects of biological preparations on phytopathogenic fungi Didymella applanata and Botrytis cinerea].
    Shpatova TV; Shternshis MV; Beliaev AA
    Prikl Biokhim Mikrobiol; 2003; 39(1):43-6. PubMed ID: 12625041
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying the Within-Field Temporal and Spatial Dynamics of Bean pod mottle virus in Soybean.
    Byamukama E; Robertson AE; Nutter FW
    Plant Dis; 2011 Feb; 95(2):126-136. PubMed ID: 30743413
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geostatistical analysis of the spatiotemporal dynamics of powdery mildew and leaf rust in wheat.
    Franke J; Gebhardt S; Menz G; Helfrich HP
    Phytopathology; 2009 Aug; 99(8):974-84. PubMed ID: 19594317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brown spot control on pear: infection models versus the inoculum pressure in Belgium.
    Van Laer S; Vorstermans B; Hauke K; Creemers P
    Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):839-47. PubMed ID: 17390829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inoculum availability and conidial dispersal patterns of Fusarium mangiferae, the causal agent of mango malformation disease.
    Gamliel-Atinsky E; Sztejnberg A; Maymon M; Shtienberg D; Freeman S
    Phytopathology; 2009 Feb; 99(2):160-6. PubMed ID: 19159308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Epidemics of ray blight on pyrethrum are linked to seed contamination and overwintering inoculum of Phoma ligulicola var. inoxydabilis.
    Pethybridge SJ; Gent DH; Hay FS
    Phytopathology; 2011 Sep; 101(9):1112-21. PubMed ID: 21501088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on spatial statistics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 2000 Jul; 90(7):738-50. PubMed ID: 18944493
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distribution of Phytophthora spp. in Field Soils Determined by Immunoassay.
    Miller SA; Madden LV; Schmitthenner AF
    Phytopathology; 1997 Jan; 87(1):101-7. PubMed ID: 18945161
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quaternary IPM (integrated pest management)--concept for the control of powdery mildew in sugar beets.
    Wolf PF; Verreet A
    Commun Agric Appl Biol Sci; 2008; 73(2):57-68. PubMed ID: 19226742
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Highlighting features of spatiotemporal spread of powdery mildew epidemics in the vineyard using statistical modeling on field experimental data.
    Calonnec A; Cartolaro P; Chadoeuf J
    Phytopathology; 2009 Apr; 99(4):411-22. PubMed ID: 19271983
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spatial Distribution of Venturia inaequalis Airborne Ascospores in Orchards.
    Charest J; Dewdney M; Paulitz T; Philion V; Carisse O
    Phytopathology; 2002 Jul; 92(7):769-79. PubMed ID: 18943274
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterisation of QoI-resistant field isolates of Botrytis cinerea from citrus and strawberry.
    Ishii H; Fountaine J; Chung WH; Kansako M; Nishimura K; Takahashi K; Oshima M
    Pest Manag Sci; 2009 Aug; 65(8):916-22. PubMed ID: 19444805
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fluctuations in number of Cercospora beticola conidia in relationship to environment and disease severity in sugar beet.
    Khan J; Qi A; Khan MF
    Phytopathology; 2009 Jul; 99(7):796-801. PubMed ID: 19522577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.