These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18943244)
1. Genetic structure of Phaeosphaeria nodorum populations in the north-central and midwestern United States. Adhikari TB; Ali S; Burlakoti RR; Singh PK; Mergoum M; Goodwin SB Phytopathology; 2008 Jan; 98(1):101-7. PubMed ID: 18943244 [TBL] [Abstract][Full Text] [Related]
2. Genetic differentiation at microsatellite loci among populations of Mycosphaerella graminicola from California, Indiana, Kansas, and North Dakota. Gurung S; Goodwin SB; Kabbage M; Bockus WW; Adhikari TB Phytopathology; 2011 Oct; 101(10):1251-9. PubMed ID: 21692645 [TBL] [Abstract][Full Text] [Related]
3. Global migration patterns in the fungal wheat pathogen Phaeosphaeria nodorum. Stukenbrock EH; Banke S; McDonald BA Mol Ecol; 2006 Sep; 15(10):2895-904. PubMed ID: 16911209 [TBL] [Abstract][Full Text] [Related]
4. Novel necrotrophic effectors from Stagonospora nodorum and corresponding host sensitivities in winter wheat germplasm in the southeastern United States. Crook AD; Friesen TL; Liu ZH; Ojiambo PS; Cowger C Phytopathology; 2012 May; 102(5):498-505. PubMed ID: 22494247 [TBL] [Abstract][Full Text] [Related]
5. Sexual recombinants make a significant contribution to epidemics caused by the wheat pathogen Phaeosphaeria nodorum. Sommerhalder RJ; McDonald BA; Mascher F; Zhan J Phytopathology; 2010 Sep; 100(9):855-62. PubMed ID: 20701482 [TBL] [Abstract][Full Text] [Related]
6. Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Adhikari TB; Jackson EW; Gurung S; Hansen JM; Bonman JM Phytopathology; 2011 Nov; 101(11):1301-10. PubMed ID: 21692647 [TBL] [Abstract][Full Text] [Related]
7. Frequency of Phaeosphaeria nodorum, the Sexual Stage of Stagonospora nodorum, on Winter Wheat in North Carolina. Cowger C; Silva-Rojas HV Phytopathology; 2006 Aug; 96(8):860-6. PubMed ID: 18943751 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of molecular genotypes and virulence phenotypes of Puccinia triticina from common wheat in North America. Ordoñez ME; Kolmer JA Phytopathology; 2009 Jun; 99(6):750-8. PubMed ID: 19453235 [TBL] [Abstract][Full Text] [Related]
9. Population Structure of Seedborne Phaeosphaeria nodorum on New York Wheat. Bennett RS; Milgroom MG; Bergstrom GC Phytopathology; 2005 Mar; 95(3):300-5. PubMed ID: 18943124 [TBL] [Abstract][Full Text] [Related]
10. High Genetic Similarity Among Populations of Phaeosphaeria nodorum Across Wheat Cultivars and Regions in Switzerland. Keller SM; Wolfe MS; McDermott JM; McDonald BA Phytopathology; 1997 Nov; 87(11):1134-9. PubMed ID: 18945009 [TBL] [Abstract][Full Text] [Related]
11. Genetic relationships among populations of Gibberella zeae from barley, wheat, potato, and sugar beet in the upper Midwest of the United States. Burlakoti RR; Ali S; Secor GA; Neate SM; McMullen MP; Adhikari TB Phytopathology; 2008 Sep; 98(9):969-76. PubMed ID: 18943734 [TBL] [Abstract][Full Text] [Related]
12. Gene Flow and Sexual Reproduction in the Wheat Glume Blotch Pathogen Phaeosphaeria nodorum (Anamorph Stagonospora nodorum). Keller SM; McDermott JM; Pettway RE; Wolfe MS; McDonald BA Phytopathology; 1997 Mar; 87(3):353-8. PubMed ID: 18945180 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Stagonospora Nodorum Blotch Severity and Kaur N; Mehl HL; Langston D; Haak DC Phytopathology; 2024 Jan; 114(1):258-268. PubMed ID: 37316953 [No Abstract] [Full Text] [Related]
14. Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent. McDonald MC; Razavi M; Friesen TL; Brunner PC; McDonald BA Fungal Genet Biol; 2012 Nov; 49(11):882-95. PubMed ID: 22922546 [TBL] [Abstract][Full Text] [Related]
15. Trichothecene profiling and population genetic analysis of Gibberella zeae from barley in North Dakota and Minnesota. Burlakoti RR; Neate SM; Adhikari TB; Gyawali S; Salas B; Steffenson BJ; Schwarz PB Phytopathology; 2011 Jun; 101(6):687-95. PubMed ID: 21244225 [TBL] [Abstract][Full Text] [Related]
16. Sequence diversity of beta-tubulin (tubA) gene in Phaeosphaeria nodorum and P. avenaria. Malkus A; Reszka E; Chang CJ; Arseniuk E; Chang PF; Ueng PP FEMS Microbiol Lett; 2005 Aug; 249(1):49-56. PubMed ID: 15972251 [TBL] [Abstract][Full Text] [Related]
17. Genetic differentiation of Puccinia triticina populations in the Middle East and genetic similarity with populations in Central Asia. Kolmer JA; Ordoñez ME; Manisterski J; Anikster Y Phytopathology; 2011 Jul; 101(7):870-7. PubMed ID: 21303212 [TBL] [Abstract][Full Text] [Related]
18. Virulence profile and genetic structure of a North Dakota population of Pyrenophora teres f. teres, the causal agent of net form net blotch of barley. Liu ZH; Zhong S; Stasko AK; Edwards MC; Friesen TL Phytopathology; 2012 May; 102(5):539-46. PubMed ID: 22494251 [TBL] [Abstract][Full Text] [Related]
19. Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Shankar M; Walker E; Golzar H; Loughman R; Wilson RE; Francki MG Phytopathology; 2008 Aug; 98(8):886-93. PubMed ID: 18943206 [TBL] [Abstract][Full Text] [Related]
20. Concordant evolution of mitochondrial and nuclear genomes in the wheat pathogen Phaeosphaeria nodorum. Sommerhalder RJ; McDonald BA; Zhan J Fungal Genet Biol; 2007 Aug; 44(8):764-72. PubMed ID: 17293135 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]