These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 18943244)
21. Genetic differentiation in Pyrenophora teres populations measured with AFLP markers. Serenius M; Manninen O; Wallwork H; Williams K Mycol Res; 2007 Feb; 111(Pt 2):213-23. PubMed ID: 17324759 [TBL] [Abstract][Full Text] [Related]
22. Local adaptation drives the diversification of effectors in the fungal wheat pathogen Parastagonospora nodorum in the United States. Richards JK; Stukenbrock EH; Carpenter J; Liu Z; Cowger C; Faris JD; Friesen TL PLoS Genet; 2019 Oct; 15(10):e1008223. PubMed ID: 31626626 [TBL] [Abstract][Full Text] [Related]
23. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping. Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250 [TBL] [Abstract][Full Text] [Related]
24. Genetic structure of South Australian Pyrenophora teres populations as revealed by microsatellite analyses. Bogacki P; Keiper FJ; Oldach KH Fungal Biol; 2010 Oct; 114(10):834-41. PubMed ID: 20943193 [TBL] [Abstract][Full Text] [Related]
25. Mating type idiomorphs from a French population of the wheat pathogen Mycosphaerella graminicola: widespread equal distribution and low but distinct levels of molecular polymorphism. Siah A; Tisserant B; El Chartouni L; Duyme F; Deweer C; Roisin-Fichter C; Sanssené J; Durand R; Reignault P; Halama P Fungal Biol; 2010; 114(11-12):980-90. PubMed ID: 21036342 [TBL] [Abstract][Full Text] [Related]
26. The Stagonospora nodorum-wheat pathosystem involves multiple proteinaceous host-selective toxins and corresponding host sensitivity genes that interact in an inverse gene-for-gene manner. Friesen TL; Meinhardt SW; Faris JD Plant J; 2007 Aug; 51(4):681-92. PubMed ID: 17573802 [TBL] [Abstract][Full Text] [Related]
27. Emergence of tan spot disease caused by toxigenic Pyrenophora tritici-repentis in Australia is not associated with increased deployment of toxin-sensitive cultivars. Oliver RP; Lord M; Rybak K; Faris JD; Solomon PS Phytopathology; 2008 May; 98(5):488-91. PubMed ID: 18943215 [TBL] [Abstract][Full Text] [Related]
28. Genetic differentiation of Magnaporthe oryzae populations from scouting plots and commercial rice fields in Korea. Park SY; Milgroom MG; Han SS; Kang S; Lee YH Phytopathology; 2008 Apr; 98(4):436-42. PubMed ID: 18944192 [TBL] [Abstract][Full Text] [Related]
29. Significant difference in pathogenicity between MAT1-1 and MAT1-2 isolates in the wheat pathogen Mycosphaerella graminicola. Zhan J; Torriani SF; McDonald BA Fungal Genet Biol; 2007 May; 44(5):339-46. PubMed ID: 17157539 [TBL] [Abstract][Full Text] [Related]
30. Effect of hosts on competition among clones and evidence of differential selection between pathogenic and saprophytic phases in experimental populations of the wheat pathogen Phaeosphaeria nodorum. Sommerhalder RJ; McDonald BA; Mascher F; Zhan J BMC Evol Biol; 2011 Jul; 11():188. PubMed ID: 21718545 [TBL] [Abstract][Full Text] [Related]
32. Genetic differentiation within the Puccinia triticina population in South America and comparison with the North American population suggests common ancestry and intercontinental migration. Ordoñez ME; Germán SE; Kolmer JA Phytopathology; 2010 Apr; 100(4):376-83. PubMed ID: 20205541 [TBL] [Abstract][Full Text] [Related]
33. Genetic diversity of the Chestnut blight fungus Cryphonectria parasitica in four French populations assessed by microsatellite markers. Breuillin F; Dutech C; Robin C Mycol Res; 2006 Mar; 110(Pt 3):288-96. PubMed ID: 16377166 [TBL] [Abstract][Full Text] [Related]
34. Global population structure and migration patterns suggest significant population differentiation among isolates of Pyrenophora tritici-repentis. Gurung S; Short DP; Adhikari TB Fungal Genet Biol; 2013 Mar; 52():32-41. PubMed ID: 23376549 [TBL] [Abstract][Full Text] [Related]
35. A New Biotype of Phaeosphaeria sp. of Uncertain Affinity Causing Stagonospora Leaf Blotch Disease in Cereals in Poland. Reszka E; Arseniuk E; Malkus A; Chung KR; O'Neill NR; Song QJ; Ueng PP Plant Dis; 2006 Jan; 90(1):113. PubMed ID: 30786500 [TBL] [Abstract][Full Text] [Related]
36. Structure and Migration in U.S. Blumeria graminis f. sp. tritici Populations. Cowger C; Parks R; Kosman E Phytopathology; 2016 Mar; 106(3):295-304. PubMed ID: 26623997 [TBL] [Abstract][Full Text] [Related]
37. Clonality and host selection in the wheat pathogenic fungus Puccinia triticina. Goyeau H; Halkett F; Zapater MF; Carlier J; Lannou C Fungal Genet Biol; 2007 Jun; 44(6):474-83. PubMed ID: 17412619 [TBL] [Abstract][Full Text] [Related]
38. Variable expression of the Stagonospora nodorum effector SnToxA among isolates is correlated with levels of disease in wheat. Faris JD; Zhang Z; Rasmussen JB; Friesen TL Mol Plant Microbe Interact; 2011 Dec; 24(12):1419-26. PubMed ID: 21770771 [TBL] [Abstract][Full Text] [Related]
39. Evidence of genetic recombination in wheat yellow rust populations of a Chinese oversummering area. Mboup M; Leconte M; Gautier A; Wan AM; Chen W; de Vallavieille-Pope C; Enjalbert J Fungal Genet Biol; 2009 Apr; 46(4):299-307. PubMed ID: 19570502 [TBL] [Abstract][Full Text] [Related]
40. Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Sui XX; Wang MN; Chen XM Phytopathology; 2009 Oct; 99(10):1209-15. PubMed ID: 19740035 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]