These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 18943245)
1. Reassessment of vegetative compatibility of Sclerotinia homoeocarpa using nitrate-nonutilizing mutants. Jo YK; Chang SW; Rees J; Jung G Phytopathology; 2008 Jan; 98(1):108-14. PubMed ID: 18943245 [TBL] [Abstract][Full Text] [Related]
2. Improved Medium for Selecting Nitrate-Nonutilizing (nit) Mutants of Verticillium dahliae. Korolev N; Katan T Phytopathology; 1997 Oct; 87(10):1067-70. PubMed ID: 18945042 [TBL] [Abstract][Full Text] [Related]
3. Nitrate Nonutilizing Mutants and Vegetative Compatibility Groups in Fusarium poae. Liu W; Sundheim L Fungal Genet Biol; 1996 Mar; 20(1):12-7. PubMed ID: 8812282 [TBL] [Abstract][Full Text] [Related]
4. Genetic relatedness of Brazilian Colletotrichum truncatum isolates assessed by vegetative compatibility groups and RAPD analysis. Sant'Anna JR; Miyamoto CT; Rosada LJ; Franco CC; Kaneshima EN; Castro-Prado MA Biol Res; 2010; 43(1):51-62. PubMed ID: 21157632 [TBL] [Abstract][Full Text] [Related]
5. Vegetative compatibility groups and parasexual segregation in Colletotrichum acutatum isolates infecting different hosts. da Silva Franco CC; de Sant' Anna JR; Rosada LJ; Kaneshima EN; Stangarlin JR; De Castro-Prado MA Phytopathology; 2011 Aug; 101(8):923-8. PubMed ID: 21425929 [TBL] [Abstract][Full Text] [Related]
6. Genetic study on JS399-19 resistance in hyphal fusion of Fusarium graminearum by using nitrate nonutilizing mutants as genetic markers. Chen Y; Chen C; Wang J; Jin L; Zhou M J Genet Genomics; 2007 May; 34(5):469-76. PubMed ID: 17560533 [TBL] [Abstract][Full Text] [Related]
7. Vegetative Compatibility and Heterokaryon Formation between Different Isolates of Colletotrichum Lindemuthianum by using the nit Mutant System. Rodrigues de Carvalho C; Cristina Mendes-Costa M Braz J Microbiol; 2011 Jan; 42(1):346-53. PubMed ID: 24031641 [TBL] [Abstract][Full Text] [Related]
9. Genetic variability of Cercospora coffeicola from organic and conventional coffee plantings, characterized by vegetative compatibility. Martins RB; Maffia LA; Mizubuti ES Phytopathology; 2008 Nov; 98(11):1205-11. PubMed ID: 18943409 [TBL] [Abstract][Full Text] [Related]
10. Vegetative Compatibility of Fusarium graminearum Isolates and Genetic Study on Their Carbendazim-Resistance Recombination in China. Chen Y; Wang JX; Zhou MG; Chen CJ; Yuan SK Phytopathology; 2007 Dec; 97(12):1584-9. PubMed ID: 18943719 [TBL] [Abstract][Full Text] [Related]
11. Vegetative compatibility groups and sexual reproduction among Spanish Monilinia fructicola isolates obtained from peach and nectarine orchards, but not Monilinia laxa. De Cal A; Egüen B; Melgarejo P Fungal Biol; 2014; 118(5-6):484-94. PubMed ID: 24863477 [TBL] [Abstract][Full Text] [Related]
12. Vegetative compatibility and parasexual segregation in Colletotrichum lindemuthianum, a fungal pathogen of the common bean. Castro-Prado MA; Querol CB; Sant'Anna JR; Miyamoto CT; Franco CC; Mangolin CA; Machado MF Genet Mol Res; 2007 Sep; 6(3):634-42. PubMed ID: 18050083 [TBL] [Abstract][Full Text] [Related]
13. Vegetative compatibility and pathogenecity of Verticillium dahliae kleb. isolates from olive in Iran. Sanei SJ; Okhovvat SM; Javan-Nikkhah M; Saremi H Commun Agric Appl Biol Sci; 2005; 70(3):323-5. PubMed ID: 16637195 [TBL] [Abstract][Full Text] [Related]
14. Vegetative Compatibility Groups in Cercospora kikuchii, the Causal Agent of Cercospora Leaf Blight and Purple Seed Stain in Soybean. Cai G; Schneider RW Phytopathology; 2005 Mar; 95(3):257-61. PubMed ID: 18943118 [TBL] [Abstract][Full Text] [Related]
15. Vegetative compatibility groups in Colletotrichum coccodes subpopulations from Australia and genetic links with subpopulations from Europe/Israel and North America. Ben-Daniel B; Bar-Zvi D; Johnson D; Harding R; Hazanovsky M; Tsror Lahkim L Phytopathology; 2010 Mar; 100(3):271-8. PubMed ID: 20128701 [TBL] [Abstract][Full Text] [Related]
16. Vegetative Compatibility Groups of Fusarium oxysporum f. sp. cepae from Onion in Colorado. Swift CE; Wickliffe ER; Schwartz HF Plant Dis; 2002 Jun; 86(6):606-610. PubMed ID: 30823232 [TBL] [Abstract][Full Text] [Related]
17. Vegetative Compatibility Groups and Aggressiveness of North American Isolates of Colletotrichum coccodes, the Causal Agent of Potato Black Dot. Nitzan N; Tsror Lahkim L; Johnson DA Plant Dis; 2006 Oct; 90(10):1287-1292. PubMed ID: 30780934 [TBL] [Abstract][Full Text] [Related]
18. Evidence for Genetic Similarity of Vegetative Compatibility Groupings in Sclerotinia homoeocarpa. Chang SW; Jo YK; Chang T; Jung G Plant Pathol J; 2014 Dec; 30(4):384-96. PubMed ID: 25506303 [TBL] [Abstract][Full Text] [Related]
19. Vegetative Compatibility Groups of Verticillium dahliae in Israel: Their Distribution and Association with Pathogenicity. Korolev N; Katan J; Katan T Phytopathology; 2000 May; 90(5):529-36. PubMed ID: 18944560 [TBL] [Abstract][Full Text] [Related]
20. Vegetative Compatibility Groups in Colletotrichum coccodes, the Causal Agent of Black Dot on Potato. Nitzan N; Hazanovsky M; Tal M; Tsror Lahkim L Phytopathology; 2002 Aug; 92(8):827-32. PubMed ID: 18942960 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]