These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 18943292)

  • 1. Primary Infection, Lesion Productivity, and Survival of Sporangia in the Grapevine Downy Mildew Pathogen Plasmopara viticola.
    Kennelly MM; Gadoury DM; Wilcox WF; Magarey PA; Seem RC
    Phytopathology; 2007 Apr; 97(4):512-22. PubMed ID: 18943292
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production and release of asexual sporangia in Plasmopara viticola.
    Caffi T; Gilardi G; Monchiero M; Rossi V
    Phytopathology; 2013 Jan; 103(1):64-73. PubMed ID: 22950738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absence of Oospores of Downy Mildew of Grape Caused by Plasmopara viticola as the Source of Primary Inoculum in Most Western Australian Vineyards.
    Killigrew BX; Sivasithamparam K; Scott ES
    Plant Dis; 2005 Jul; 89(7):777. PubMed ID: 30791264
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Report of QoI-Resistant Downy Mildew (Plasmopara viticola) of Grape (Vitis vinifera cv. Vidal Blanc) in Kentucky.
    Gauthier NAW; Amsden B
    Plant Dis; 2014 Feb; 98(2):276. PubMed ID: 30708752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The host guides morphogenesis and stomatal targeting in the grapevine pathogen Plasmopara viticola.
    Kiefer B; Riemann M; Büche C; Kassemeyer HH; Nick P
    Planta; 2002 Jul; 215(3):387-93. PubMed ID: 12111219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Temperature and Moisture on Sporulation and Infection by Pseudoperonospora cubensis.
    Sun S; Lian S; Feng S; Dong X; Wang C; Li B; Liang W
    Plant Dis; 2017 Apr; 101(4):562-567. PubMed ID: 30677360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can Spore Sampler Data Be Used to Predict
    Brischetto C; Bove F; Languasco L; Rossi V
    Front Plant Sci; 2020; 11():1187. PubMed ID: 32903587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Course of Colonization of Two Different Vitis Genotypes by Plasmopara viticola Indicates Compatible and Incompatible Host-Pathogen Interactions.
    Unger S; Büche C; Boso S; Kassemeyer HH
    Phytopathology; 2007 Jul; 97(7):780-6. PubMed ID: 18943926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The oospore stage of
    Shishkoff N
    Mycologia; 2019; 111(4):632-646. PubMed ID: 31136264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonhost versus host resistance to the grapevine downy mildew, Plasmopara viticola, studied at the tissue level.
    Díez-Navajas AM; Wiedemann-Merdinoglu S; Greif C; Merdinoglu D
    Phytopathology; 2008 Jul; 98(7):776-80. PubMed ID: 18943253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Study of the Germination Dynamics of
    Maddalena G; Russo G; Toffolatti SL
    Front Microbiol; 2021; 12():698586. PubMed ID: 34305864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A semi-automatic non-destructive method to quantify grapevine downy mildew sporulation.
    Peressotti E; Duchêne E; Merdinoglu D; Mestre P
    J Microbiol Methods; 2011 Feb; 84(2):265-71. PubMed ID: 21167874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of temperature and solar radiation thresholds to modify a lettuce downy mildew warning system.
    Wu BM; van Bruggen AH; Subbarao KV; Scherm H
    Phytopathology; 2002 Jun; 92(6):631-6. PubMed ID: 18944260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First Report of Grapevine Downy Mildew (Plasmopara viticola) in Commercial Viticulture in Western Australia.
    McKirdy SJ; Riley IT; Cameron IJ; Magarey PA
    Plant Dis; 1999 Mar; 83(3):301. PubMed ID: 30845517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of climate change on infection of grapevine by downy and powdery mildew under controlled environment.
    Pugliese M; Gullino ML; Garibaldi A
    Commun Agric Appl Biol Sci; 2011; 76(4):579-82. PubMed ID: 22702176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Weather-Driven Model for Predicting Infections of Grapevines by Sporangia of
    Brischetto C; Bove F; Fedele G; Rossi V
    Front Plant Sci; 2021; 12():636607. PubMed ID: 33767721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Sporulation and Ultrastructural Alterations of Grapevine Downy Mildew by the Endophytic Fungus Alternaria alternata.
    Musetti R; Vecchione A; Stringher L; Borselli S; Zulini L; Marzani C; D'Ambrosio M; di Toppi LS; Pertot I
    Phytopathology; 2006 Jul; 96(7):689-98. PubMed ID: 18943142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal development of ontogenic resistance to downy mildew in grape berries and rachises.
    Kennelly MM; Gadoury DM; Wilcox WF; Magarey PA; Seem RC
    Phytopathology; 2005 Dec; 95(12):1445-52. PubMed ID: 18943556
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Real-Time PCR Assay for the Quantification of
    Si Ammour M; Bove F; Toffolatti SL; Rossi V
    Front Plant Sci; 2020; 11():1202. PubMed ID: 32849746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: application to the evaluation of resistance to downy mildew.
    Kim Khiook IL; Schneider C; Heloir MC; Bois B; Daire X; Adrian M; Trouvelot S
    J Microbiol Methods; 2013 Nov; 95(2):235-44. PubMed ID: 23994353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.