These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 18943312)

  • 21. Understanding
    Ferris AC; Walbot V
    J Fungi (Basel); 2020 Dec; 7(1):. PubMed ID: 33375485
    [No Abstract]   [Full Text] [Related]  

  • 22. Tip of the iceberg? Three novel TOPLESS-interacting effectors of the gall-inducing fungus Ustilago maydis.
    Khan M; Uhse S; Bindics J; Kogelmann B; Nagarajan N; Tabassum R; Ingole KD; Djamei A
    New Phytol; 2024 Jul; ():. PubMed ID: 39021059
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haplo-insufficiency for different genes differentially reduces pathogenicity and virulence in a fungal phytopathogen.
    Pham CD; Yu Z; Ben Lovely C; Agarwal C; Myers DA; Paul JA; Cooper M; Barati M; Perlin MH
    Fungal Genet Biol; 2012 Jan; 49(1):21-9. PubMed ID: 22146805
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ustilago maydis secondary metabolism-from genomics to biochemistry.
    Bölker M; Basse CW; Schirawski J
    Fungal Genet Biol; 2008 Aug; 45 Suppl 1():S88-93. PubMed ID: 18585066
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monomorphic Nonpathogenic Mutants of Ustilago maydis.
    Martínez-Espinoza AD; León C; Elizarraraz G; Ruiz-Herrera J
    Phytopathology; 1997 Mar; 87(3):259-65. PubMed ID: 18945168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pathogen-associated molecular pattern recognition rather than development of tissue necrosis contributes to bacterial induction of systemic acquired resistance in Arabidopsis.
    Mishina TE; Zeier J
    Plant J; 2007 May; 50(3):500-13. PubMed ID: 17419843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipid-induced filamentous growth in Ustilago maydis.
    Klose J; de Sá MM; Kronstad JW
    Mol Microbiol; 2004 May; 52(3):823-35. PubMed ID: 15101987
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Robust Cre recombinase activity in the biotrophic smut fungus Ustilago maydis enables efficient conditional null mutants in planta.
    de la Torre A; Jurca M; Hoffmann K; Schmitz L; Heimel K; Kämper J; Pérez-Martín J
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34849846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential Role of Laccases in the Relationship of the Maize Late Wilt Causal Agent,
    Degani O; Goldblat Y
    J Fungi (Basel); 2020 May; 6(2):. PubMed ID: 32429509
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aggressive strains of the late wilt fungus of corn exist in Israel in mixed populations and can specialize in disrupting growth or plant health.
    Shofman G; Bahouth M; Degani O
    Fungal Biol; 2022; 126(11-12):793-808. PubMed ID: 36517147
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation on the differentiation of two Ustilago esculenta strains - implications of a relationship with the host phenotypes appearing in the fields.
    Zhang Y; Cao Q; Hu P; Cui H; Yu X; Ye Z
    BMC Microbiol; 2017 Dec; 17(1):228. PubMed ID: 29212471
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inbreeding levels of two Ustilago maydis populations.
    Barnes CW; Szabo LJ; May G; Groth JV
    Mycologia; 2004; 96(6):1236-44. PubMed ID: 21148947
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deletion of
    Vijayakrishnapillai LMK; Desmarais JS; Groeschen MN; Perlin MH
    J Fungi (Basel); 2018 Dec; 5(1):. PubMed ID: 30577430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The biological cycle of Sporisorium reilianum f.sp. zeae: an overview using microscopy.
    Martinez C; Roux C; Jauneau A; Dargent R
    Mycologia; 2002; 94(3):505-14. PubMed ID: 21156521
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic Manipulation of the Brassicaceae Smut Fungus
    Plücker L; Bösch K; Geißl L; Hoffmann P; Göhre V
    J Fungi (Basel); 2021 Jan; 7(1):. PubMed ID: 33435409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and Pathogenicity of the Fungus Crinipellis perniciosa on Interaction with Cacao Leaves.
    Kilaru A; Hasenstein KH
    Phytopathology; 2005 Jan; 95(1):101-7. PubMed ID: 18943842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Production of huitlacoche, Ustilago maydis: timing inoculation and controlling pollination.
    Pataky JK; Chandler MA
    Mycologia; 2003; 95(6):1261-70. PubMed ID: 21149027
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A new and effective method to induce infection of Phyllachora maydis into corn for tar spot studies in controlled environments.
    Solórzano JE; Issendorf SE; Drott MT; Check JC; Roggenkamp EM; Cruz CD; Kleczewski NM; Gongóra-Canul CC; Malvick DK
    Plant Methods; 2023 Aug; 19(1):83. PubMed ID: 37563651
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Uncovering the Host Range for Maize Pathogen
    Dor S; Degani O
    Plants (Basel); 2019 Jul; 8(8):. PubMed ID: 31366179
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carboxin-resistant mutant of ustilago maydis is impaired in its pathogenicity for zea mays.
    Ruiz-Herrera J; Martinez-Espinoza AD; Alvarez PE; Xoconostle-Cazares B
    Curr Microbiol; 1999 Nov; 39(5):291-4. PubMed ID: 10489439
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.