These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 18943350)
1. Influence of a Fungus-Feeding Nematode on Growth and Biocontrol Efficacy of Trichoderma harzianum. Bae YS; Knudsen GR Phytopathology; 2001 Mar; 91(3):301-6. PubMed ID: 18943350 [TBL] [Abstract][Full Text] [Related]
2. Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil. Kim TG; Knudsen G J Microbiol Biotechnol; 2018 May; 28(5):831-838. PubMed ID: 29539878 [TBL] [Abstract][Full Text] [Related]
3. Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Kim TG; Knudsen GR J Microbiol Biotechnol; 2021 Jun; 31(6):815-822. PubMed ID: 33782223 [TBL] [Abstract][Full Text] [Related]
4. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus. Kim TG; Knudsen GR Fungal Biol; 2011; 115(4-5):317-25. PubMed ID: 21530913 [TBL] [Abstract][Full Text] [Related]
5. Cotransformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Bae YS; Knudsen GR Appl Environ Microbiol; 2000 Feb; 66(2):810-5. PubMed ID: 10653755 [TBL] [Abstract][Full Text] [Related]
6. Use of Green Fluorescent Protein and Image Analysis to Quantify Proliferation of Trichoderma harzianum in Nonsterile Soil. Orr KA; Knudsen GR Phytopathology; 2004 Dec; 94(12):1383-9. PubMed ID: 18943710 [TBL] [Abstract][Full Text] [Related]
7. Individual-based approach to modeling hyphal growth of a biocontrol fungus in soil. Knudsen GR; Stack JP; Schuhmann SO; Orr K; Lapaglia C Phytopathology; 2006 Oct; 96(10):1108-15. PubMed ID: 18943499 [TBL] [Abstract][Full Text] [Related]
8. Effect of nematode-trapping fungi on an entomopathogenic nematode originating from the same field site in California. Koppenhöfer AM; Jaffee BA; Muldoon AE; Strong DR; Kaya HK J Invertebr Pathol; 1996 Nov; 68(3):246-52. PubMed ID: 8931364 [TBL] [Abstract][Full Text] [Related]
9. Biological control of Sclerotinia sclerotiorum attacking soybean plants. Degradation of the cell walls of this pathogen by Trichoderma harzianum (BAFC 742). Biological control of Sclerotinia sclerotiorum by Trichoderma harzianum. Menendez AB; Godeas A Mycopathologia; 1998; 142(3):153-60. PubMed ID: 16284851 [TBL] [Abstract][Full Text] [Related]
10. Mycoparasitism studies of Trichoderma harzianum against Sclerotinia sclerotiorum: evaluation of antagonism and expression of cell wall-degrading enzymes genes. Troian RF; Steindorff AS; Ramada MH; Arruda W; Ulhoa CJ Biotechnol Lett; 2014 Oct; 36(10):2095-101. PubMed ID: 24966041 [TBL] [Abstract][Full Text] [Related]
11. Biological Control of the Root-Knot Nematode Meloidogyne javanica by Trichoderma harzianum. Sharon E; Bar-Eyal M; Chet I; Herrera-Estrella A; Kleifeld O; Spiegel Y Phytopathology; 2001 Jul; 91(7):687-93. PubMed ID: 18942999 [TBL] [Abstract][Full Text] [Related]
12. [Mycoparasites effect on reproductive ability of Sclerotinia sclerotiorum sclerotia.]. Mónaco CI; Rollán MC; Nico AI Rev Iberoam Micol; 1998 Jun; 15(2):81-4. PubMed ID: 17655415 [TBL] [Abstract][Full Text] [Related]
13. Interactions Among a Soil Organic Amendment, Nematodes, and the Nematode-Trapping Fungus Dactylellina candidum. Jaffee BA Phytopathology; 2006 Dec; 96(12):1388-96. PubMed ID: 18943672 [TBL] [Abstract][Full Text] [Related]
14. Correlations between most probable number and activity of nematode-trapping fungi. Jaffee BA Phytopathology; 2003 Dec; 93(12):1599-605. PubMed ID: 18943626 [TBL] [Abstract][Full Text] [Related]
15. A method for selecting Trichoderma strains antagonistic against Sclerotinia minor. Naár Z; Kecskés M Microbiol Res; 1995 Sep; 150(3):239-46. PubMed ID: 7551733 [TBL] [Abstract][Full Text] [Related]
16. Water potential affects Coniothyrium minitans growth, germination and parasitism of Sclerotinia sclerotiorum sclerotia. Jones EE; Stewart A; Whipps JM Fungal Biol; 2011 Sep; 115(9):871-81. PubMed ID: 21872184 [TBL] [Abstract][Full Text] [Related]
17. Suppression of the biocontrol agent trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus glomus intraradices in root-free soil. Green H; Larsen J; Olsson PA; Jensen DF; Jakobsen I Appl Environ Microbiol; 1999 Apr; 65(4):1428-34. PubMed ID: 10103232 [TBL] [Abstract][Full Text] [Related]
18. The role of humic fractions from soil and compost in controlling the growth in vitro of phytopathogenic and antagonistic soil-borne fungi. Loffredo E; Berloco M; Senesi N Ecotoxicol Environ Saf; 2008 Mar; 69(3):350-7. PubMed ID: 18177939 [TBL] [Abstract][Full Text] [Related]
19. Combined effects of Brassica napus seed meal and Trichoderma harzianum on two soilborne plant pathogens. Dandurand LM; Mosher RD; Knudsen GR Can J Microbiol; 2000 Nov; 46(11):1051-7. PubMed ID: 11109495 [TBL] [Abstract][Full Text] [Related]
20. Histopathological studies of sclerotia of Rhizoctonia solani parasitized by the EGFP transformant of Trichoderma virens. Liu LN; Zhang JZ; Xu T Lett Appl Microbiol; 2009 Dec; 49(6):745-50. PubMed ID: 19843210 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]