These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

71 related articles for article (PubMed ID: 18943499)

  • 1. Individual-based approach to modeling hyphal growth of a biocontrol fungus in soil.
    Knudsen GR; Stack JP; Schuhmann SO; Orr K; Lapaglia C
    Phytopathology; 2006 Oct; 96(10):1108-15. PubMed ID: 18943499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil.
    Kim TG; Knudsen G
    J Microbiol Biotechnol; 2018 May; 28(5):831-838. PubMed ID: 29539878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass.
    López-Mondéjar R; Antón A; Raidl S; Ros M; Pascual JA
    Bioresour Technol; 2010 Apr; 101(8):2888-91. PubMed ID: 19897358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of Green Fluorescent Protein and Image Analysis to Quantify Proliferation of Trichoderma harzianum in Nonsterile Soil.
    Orr KA; Knudsen GR
    Phytopathology; 2004 Dec; 94(12):1383-9. PubMed ID: 18943710
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of
    Kim TG; Knudsen GR
    J Microbiol Biotechnol; 2021 Jun; 31(6):815-822. PubMed ID: 33782223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a Fungus-Feeding Nematode on Growth and Biocontrol Efficacy of Trichoderma harzianum.
    Bae YS; Knudsen GR
    Phytopathology; 2001 Mar; 91(3):301-6. PubMed ID: 18943350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suppression of the biocontrol agent trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus glomus intraradices in root-free soil.
    Green H; Larsen J; Olsson PA; Jensen DF; Jakobsen I
    Appl Environ Microbiol; 1999 Apr; 65(4):1428-34. PubMed ID: 10103232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus.
    Kim TG; Knudsen GR
    Fungal Biol; 2011; 115(4-5):317-25. PubMed ID: 21530913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungal foraging behaviour and hyphal space exploration in micro-structured Soil Chips.
    Aleklett K; Ohlsson P; Bengtsson M; Hammer EC
    ISME J; 2021 Jun; 15(6):1782-1793. PubMed ID: 33469165
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of monoclonal antibodies to quantify the dynamics of alpha-galactosidase and endo-1,4-beta-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat.
    Thornton CR
    Environ Microbiol; 2005 May; 7(5):737-49. PubMed ID: 15819855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modelling nutrient uptake by individual hyphae of arbuscular mycorrhizal fungi: temporal and spatial scales for an experimental design.
    Schnepf A; Jones D; Roose T
    Bull Math Biol; 2011 Sep; 73(9):2175-200. PubMed ID: 21225357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi.
    Höppener-Ogawa S; Leveau JH; van Veen JA; De Boer W
    ISME J; 2009 Feb; 3(2):190-8. PubMed ID: 18923455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling the growth of Trichoderma virens with limited sampling of digital images.
    Cross D; Kenerley CM
    J Appl Microbiol; 2004; 97(3):486-94. PubMed ID: 15281928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modelling the growth of soil-borne fungi in response to carbon and nitrogen.
    Lamour A; Van den Bosch F; Termorshuizen AJ; Jeger MJ
    IMA J Math Appl Med Biol; 2000 Dec; 17(4):329-46. PubMed ID: 11270748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Does percent root length colonization and soil hyphal length reflect the extent of colonization for all AMF?
    Hart MM; Reader RJ
    Mycorrhiza; 2002 Dec; 12(6):297-301. PubMed ID: 12466917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amendment with peony root bark improves the biocontrol efficacy of Trichoderma harzianum against Rhizoctonia solani.
    Lee TO; Khan Z; Kim SG; Kim YH
    J Microbiol Biotechnol; 2008 Sep; 18(9):1537-43. PubMed ID: 18852509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method to enhance growth and sporulation of pelletized biocontrol fungi.
    Knudsen GR; Eschen DJ; Dandurand LM; Wang ZG
    Appl Environ Microbiol; 1991 Oct; 57(10):2864-7. PubMed ID: 16348562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy.
    Longa CM; Savazzini F; Tosi S; Elad Y; Pertot I
    J Appl Microbiol; 2009 May; 106(5):1549-57. PubMed ID: 19210568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Induction of contour sensing in Aspergillus niger by stress and its relevance to fungal growth mechanics and hyphal tip structure.
    Bowen AD; Davidson FA; Keatch R; Gadd GM
    Fungal Genet Biol; 2007 Jun; 44(6):484-91. PubMed ID: 17267249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of bulk density on the spatial organisation of the fungus Rhizoctonia solani in soil.
    Harris K; Young IM; Gilligan CA; Otten W; Ritz K
    FEMS Microbiol Ecol; 2003 May; 44(1):45-56. PubMed ID: 19719650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.