These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 18943507)
21. Role of Salicylic Acid and Components of the Phenylpropanoid Pathway in Basal and Cultivar-Related Resistance of Oilseed Rape ( Zheng X; Koopmann B; von Tiedemann A Plants (Basel); 2019 Nov; 8(11):. PubMed ID: 31717946 [TBL] [Abstract][Full Text] [Related]
22. Quantitative Trait Locus Mapping of Resistance to Turnip Yellows Virus in Greer SF; Hackenberg D; Gegas V; Mitrousia G; Edwards D; Batley J; Teakle GR; Barker GC; Walsh JA Front Plant Sci; 2021; 12():781385. PubMed ID: 34956278 [TBL] [Abstract][Full Text] [Related]
23. Conserved patterns of chromosome pairing and recombination in Brassica napus crosses. Parkin IA; Lydiate DJ Genome; 1997 Aug; 40(4):496-504. PubMed ID: 18464842 [TBL] [Abstract][Full Text] [Related]
24. Mitigation using a tandem construct containing a selectively unfit gene precludes establishment of Brassica napus transgenes in hybrids and backcrosses with weedy Brassica rapa. Al-Ahmad H; Gressel J Plant Biotechnol J; 2006 Jan; 4(1):23-33. PubMed ID: 17177782 [TBL] [Abstract][Full Text] [Related]
25. Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Scott SE; Wilkinson MJ Nat Biotechnol; 1999 Apr; 17(4):390-2. PubMed ID: 10207890 [TBL] [Abstract][Full Text] [Related]
26. Molecular diagnosis to discriminate pathogen and apathogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Tran VT; Braus-Stromeyer SA; Timpner C; Braus GH Appl Microbiol Biotechnol; 2013 May; 97(10):4467-83. PubMed ID: 23229565 [TBL] [Abstract][Full Text] [Related]
27. RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement. Liu RH; Meng JL Yi Chuan Xue Bao; 2006 Sep; 33(9):814-23. PubMed ID: 16980128 [TBL] [Abstract][Full Text] [Related]
28. The Three Lineages of the Diploid Hybrid Verticillium longisporum Differ in Virulence and Pathogenicity. Novakazi F; Inderbitzin P; Sandoya G; Hayes RJ; von Tiedemann A; Subbarao KV Phytopathology; 2015 May; 105(5):662-73. PubMed ID: 25585057 [TBL] [Abstract][Full Text] [Related]
29. Molecular characterization of the host-adapted pathogen Verticillium longisporum on the basis of a group-I intron found in the nuclear SSU-rRNA gene. Karapapa VK; Typas MA Curr Microbiol; 2001 Mar; 42(3):217-24. PubMed ID: 11277099 [TBL] [Abstract][Full Text] [Related]
30. Production of high yield short duration Brassica napus by interspecific hybridization between B. oleracea and B. rapa. Karim MM; Siddika A; Tonu NN; Hossain DM; Meah MB; Kawanabe T; Fujimoto R; Okazaki K Breed Sci; 2014 Mar; 63(5):495-502. PubMed ID: 24757390 [TBL] [Abstract][Full Text] [Related]
31. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Parkin IA; Sharpe AG; Keith DJ; Lydiate DJ Genome; 1995 Dec; 38(6):1122-31. PubMed ID: 18470236 [TBL] [Abstract][Full Text] [Related]
32. A distinct and genetically diverse lineage of the hybrid fungal pathogen Verticillium longisporum population causes stem striping in British oilseed rape. Depotter JRL; Seidl MF; van den Berg GCM; Thomma BPHJ; Wood TA Environ Microbiol; 2017 Oct; 19(10):3997-4009. PubMed ID: 28523726 [TBL] [Abstract][Full Text] [Related]
33. Identification and Characterization of Zou Z; Bisht V; Fernando WGD Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32429108 [TBL] [Abstract][Full Text] [Related]
34. Internal resistance in winter oilseed rape inhibits systemic spread of the vascular pathogen Verticillium longisporum. Eynck C; Koopmann B; Karlovsky P; von Tiedemann A Phytopathology; 2009 Jul; 99(7):802-11. PubMed ID: 19522578 [TBL] [Abstract][Full Text] [Related]
35. Verticillium wilt of cauliflower in Belgium. Debode J; Spiessens K; De Rooster L; Höfte M Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):241-9. PubMed ID: 12701428 [TBL] [Abstract][Full Text] [Related]
36. The responses of crop - wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression. Sutherland JP; Justinova L; Poppy GM Environ Biosafety Res; 2006; 5(1):15-25. PubMed ID: 16978571 [TBL] [Abstract][Full Text] [Related]
37. Loss of function of CRT1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Pröbsting M; Schenke D; Hossain R; Häder C; Thurau T; Wighardt L; Schuster A; Zhou Z; Ye W; Rietz S; Leckband G; Cai D Plant Biotechnol J; 2020 Nov; 18(11):2328-2344. PubMed ID: 32358986 [TBL] [Abstract][Full Text] [Related]
38. Defence reactions in the apoplastic proteome of oilseed rape (Brassica napus var. napus) attenuate Verticillium longisporum growth but not disease symptoms. Floerl S; Druebert C; Majcherczyk A; Karlovsky P; Kües U; Polle A BMC Plant Biol; 2008 Dec; 8():129. PubMed ID: 19094241 [TBL] [Abstract][Full Text] [Related]
39. Resynthesized lines from domesticated and wild Brassica taxa and their hybrids with B. napus L.: genetic diversity and hybrid yield. Jesske T; Olberg B; Schierholt A; Becker HC Theor Appl Genet; 2013 Apr; 126(4):1053-65. PubMed ID: 23328861 [TBL] [Abstract][Full Text] [Related]
40. Overexpression of a Brassica nigra cDNA gives enhanced resistance to Leptosphaeria maculans in B. napus. Wretblad S; Bohman S; Dixelius C Mol Plant Microbe Interact; 2003 Jun; 16(6):477-84. PubMed ID: 12795374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]