These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 18943534)
1. Temporal and Spatial Dynamics of Primary and Secondary Infection by Armillaria ostoyae in a Pinus pinaster Plantation. Lung-Escarmant B; Guyon D Phytopathology; 2004 Feb; 94(2):125-31. PubMed ID: 18943534 [TBL] [Abstract][Full Text] [Related]
2. Genetic structure of an expanding Armillaria root rot fungus (Armillaria ostoyae) population in a managed pine forest in southwestern France. Prospero S; Lung-Escarmant B; Dutech C Mol Ecol; 2008 Jul; 17(14):3366-78. PubMed ID: 18564091 [TBL] [Abstract][Full Text] [Related]
3. Dynamics of primary and secondary infection in take-all epidemics. Bailey DJ; Gilligan CA Phytopathology; 1999 Jan; 89(1):84-91. PubMed ID: 18944808 [TBL] [Abstract][Full Text] [Related]
4. Genetic population structure of three Armillaria species at the landscape scale: a case study from Swiss Pinus mugo forests. Bendel M; Kienast F; Rigling D Mycol Res; 2006 Jun; 110(Pt 6):705-12. PubMed ID: 16616839 [TBL] [Abstract][Full Text] [Related]
5. Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster). Roriz M; Santos C; Vasconcelos MW Exp Parasitol; 2011 Aug; 128(4):357-64. PubMed ID: 21570967 [TBL] [Abstract][Full Text] [Related]
6. Occurrence of genets of Armillaria spp. in four mountain forests in Central France: the colonization strategy of Armillaria ostoyae. Legrand P; Ghahari S; Guillaumin JJ New Phytol; 1996 Jun; 133(2):321-332. PubMed ID: 29681066 [TBL] [Abstract][Full Text] [Related]
7. Biomass production and carbon sequestration potential in poplar plantations with different management patterns. Fang S; Xue J; Tang L J Environ Manage; 2007 Nov; 85(3):672-9. PubMed ID: 17110018 [TBL] [Abstract][Full Text] [Related]
8. Genetic signatures of variation in population size in a native fungal pathogen after the recent massive plantation of its host tree. Labbé F; Fontaine MC; Robin C; Dutech C Heredity (Edinb); 2017 Dec; 119(6):402-410. PubMed ID: 28930289 [TBL] [Abstract][Full Text] [Related]
9. Stock-Type Susceptibility and Delineation of Treatment Areas for a Cryptic Pinus radiata Root Disease. Hood IA; Kimberley MO; Gardner JF Phytopathology; 2006 Jun; 96(6):630-6. PubMed ID: 18943181 [TBL] [Abstract][Full Text] [Related]
10. Virulence and Stump Colonization Ability of Armillaria borealis on Norway Spruce Seedlings in Comparison to Sympatric Armillaria Species. Heinzelmann R; Prospero S; Rigling D Plant Dis; 2017 Mar; 101(3):470-479. PubMed ID: 30677340 [TBL] [Abstract][Full Text] [Related]
11. Relationships Between Verticillium dahliae Inoculum Density and Wilt Incidence, Severity, and Growth of Cauliflower. Xiao CL; Subbarao KV Phytopathology; 1998 Oct; 88(10):1108-15. PubMed ID: 18944824 [TBL] [Abstract][Full Text] [Related]
12. [Population dynamics of beauveria bassiana in masson pine plantation ecosystem]. Wang B; Fan M; Li Z Ying Yong Sheng Tai Xue Bao; 2002 Nov; 13(11):1368-72. PubMed ID: 12624985 [TBL] [Abstract][Full Text] [Related]
13. 13C-isotopic fingerprint of Pinus pinaster Ait. and Pinus sylvestris L. wood related to the quality of standing tree mass in forests from NW Spain. Fernandez I; González-Prieto SJ; Cabaneiro A Rapid Commun Mass Spectrom; 2005; 19(22):3199-206. PubMed ID: 16208761 [TBL] [Abstract][Full Text] [Related]
14. Seed gene flow and fine-scale structure in a Mediterranean pine ( Pinus pinaster Ait.) using nuclear microsatellite markers. González-Martínez C; Gerber S; Cervera T; Martínez-Zapater M; Gil L; Alía R Theor Appl Genet; 2002 Jun; 104(8):1290-1297. PubMed ID: 12582583 [TBL] [Abstract][Full Text] [Related]
15. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth. Moreaux V; Lamaud E; Bosc A; Bonnefond JM; Medlyn BE; Loustau D Tree Physiol; 2011 Sep; 31(9):903-21. PubMed ID: 21724584 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis reveals efficient sexual spore dispersal at a fine spatial scale in Armillaria ostoyae, the causal agent of root-rot disease in conifers. Dutech C; Labbé F; Capdevielle X; Lung-Escarmant B Fungal Biol; 2017; 121(6-7):550-560. PubMed ID: 28606350 [TBL] [Abstract][Full Text] [Related]
17. Network formation by rhizomorphs of Armillaria lutea in natural soil: their description and ecological significance. Lamour A; Termorshuizen AJ; Volker D; Jeger MJ FEMS Microbiol Ecol; 2007 Nov; 62(2):222-32. PubMed ID: 17645531 [TBL] [Abstract][Full Text] [Related]
18. Genomic Comparisons of Two Armillaria Species with Different Ecological Behaviors and Their Associated Soil Microbial Communities. Caballero JRI; Lalande BM; Hanna JW; Klopfenstein NB; Kim MS; Stewart JE Microb Ecol; 2023 Feb; 85(2):708-729. PubMed ID: 35312808 [TBL] [Abstract][Full Text] [Related]
19. Spatial and Temporal Analyses of Bacterial Blight of Onion Caused by Xanthomonas axonopodis pv. allii. Roumagnac P; Pruvost O; Chiroleu F; Hughes G Phytopathology; 2004 Feb; 94(2):138-46. PubMed ID: 18943536 [TBL] [Abstract][Full Text] [Related]
20. Frequent diploidisation of haploid Armillaria ostoyae strains in an outdoor inoculation experiment. Heinzelmann R; Prospero S; Rigling D Fungal Biol; 2018; 122(2-3):147-155. PubMed ID: 29458718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]