BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 18943645)

  • 1. Fruit Exocarp Phenols in Relation to Quiescence and Development of Monilinia fructicola Infections in Prunus spp.: A Role for Cellular Redox?
    Lee MH; Bostock RM
    Phytopathology; 2007 Mar; 97(3):269-77. PubMed ID: 18943645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new selective medium for the recovery and enumeration of Monilinia fructicola, M. fructigena, and M. laxa from stone fruits.
    Amiri A; Holb IJ; Schnabel G
    Phytopathology; 2009 Oct; 99(10):1199-208. PubMed ID: 19740034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Induction, Regulation, and Role in Pathogenesis of Appressoria in Monilinia fructicola.
    Lee MH; Bostock RM
    Phytopathology; 2006 Oct; 96(10):1072-80. PubMed ID: 18943495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of a redox-regulated cutinase gene, MfCUT1, increases virulence of the brown rot pathogen Monilinia fructicola on Prunus spp.
    Lee MH; Chiu CM; Roubtsova T; Chou CM; Bostock RM
    Mol Plant Microbe Interact; 2010 Feb; 23(2):176-86. PubMed ID: 20064061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fruit maturity and post-harvest environmental conditions influence the pre-penetration stages of Monilinia infections in peaches.
    Garcia-Benitez C; Melgarejo P; De Cal A
    Int J Food Microbiol; 2017 Jan; 241():117-122. PubMed ID: 27768931
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early brown rot infections in sweet cherry fruit are detected by monilinia-specific DNA primers.
    Förster H; Adaskaveg JE
    Phytopathology; 2000 Feb; 90(2):171-8. PubMed ID: 18944605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and Differentiation of Monilinia Species Causing Brown Rot of Pome and Stone Fruit using High-Resolution Melting (HRM) Analysis.
    Papavasileiou A; Madesis PB; Karaoglanidis GS
    Phytopathology; 2016 Sep; 106(9):1055-64. PubMed ID: 27247082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of biocontrol agents from food microbial isolates for controlling post-harvest peach brown rot caused by Monilinia fructicola.
    Zhou T; Schneider KE; Li XZ
    Int J Food Microbiol; 2008 Aug; 126(1-2):180-5. PubMed ID: 18573559
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of Five Endopolygalacturonase Genes and Demonstration that MfPG1 Overexpression Diminishes Virulence in the Brown Rot Pathogen Monilinia fructicola.
    Chou CM; Yu FY; Yu PL; Ho JF; Bostock RM; Chung KR; Huang JW; Lee MH
    PLoS One; 2015; 10(6):e0132012. PubMed ID: 26120831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis.
    Villarino M; Sandín-España P; Melgarejo P; De Cal A
    J Agric Food Chem; 2011 Apr; 59(7):3205-13. PubMed ID: 21370882
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.
    Villarino M; Melgarejo P; De Cal A
    Int J Food Microbiol; 2016 Jun; 227():6-12. PubMed ID: 27043383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media.
    Mustafa MH; Corre MN; Heurtevin L; Bassi D; Cirilli M; Quilot-Turion B
    Fungal Biol; 2023; 127(7-8):1085-1097. PubMed ID: 37495299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phenotypic plasticity of Monilinia spp. in response to light wavelengths: From in vitro development to virulence on nectarines.
    Verde-Yáñez L; Vall-Llaura N; Usall J; Teixidó N; Torres R
    Int J Food Microbiol; 2022 Jul; 373():109700. PubMed ID: 35580409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combination of antagonistic yeasts with two food additives for control of brown rot caused by Monilinia fructicola on sweet cherry fruit.
    Qin GZ; Tian SP; Xu Y; Chan ZL; Li BQ
    J Appl Microbiol; 2006 Mar; 100(3):508-15. PubMed ID: 16478490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and aggressiveness factors affecting Monilinia spp. survival peaches.
    Villarino M; Melgarejo P; De Cal A
    Int J Food Microbiol; 2016 May; 224():22-7. PubMed ID: 26918325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Monilinia spp. Populations on Stone Fruit in South Italy.
    Abate D; Pastore C; Gerin D; De Miccolis Angelini RM; Rotolo C; Pollastro S; Faretra F
    Plant Dis; 2018 Sep; 102(9):1708-1717. PubMed ID: 30125154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of temperature on decay, mycelium development and sporodochia production caused by Monilinia fructicola and M. laxa on stone fruits.
    Bernat M; Segarra J; Xu XM; Casals C; Usall J
    Food Microbiol; 2017 Jun; 64():112-118. PubMed ID: 28213014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Postharvest biocontrol ability of killer yeasts against Monilinia fructigena and Monilinia fructicola on stone fruit.
    Grzegorczyk M; Żarowska B; Restuccia C; Cirvilleri G
    Food Microbiol; 2017 Feb; 61():93-101. PubMed ID: 27697174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antagonistic activities of volatiles produced by two Bacillus strains against Monilinia fructicola in peach fruit.
    Liu C; Yin X; Wang Q; Peng Y; Ma Y; Liu P; Shi J
    J Sci Food Agric; 2018 Dec; 98(15):5756-5763. PubMed ID: 29756313
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola.
    Yu PL; Wang CL; Chen PY; Lee MH
    Mol Plant Pathol; 2017 Aug; 18(6):783-797. PubMed ID: 27239957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.