These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 18943694)
1. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations. Mazzola M; Zhao X; Cohen MF; Raaijmakers JM Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694 [TBL] [Abstract][Full Text] [Related]
2. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. Tran H; Ficke A; Asiimwe T; Höfte M; Raaijmakers JM New Phytol; 2007; 175(4):731-742. PubMed ID: 17688588 [TBL] [Abstract][Full Text] [Related]
3. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. De Souza JT; De Boer M; De Waard P; Van Beek TA; Raaijmakers JM Appl Environ Microbiol; 2003 Dec; 69(12):7161-72. PubMed ID: 14660362 [TBL] [Abstract][Full Text] [Related]
4. Influence of Soil Temperature and Matric Potential on Sugar Beet Seedling Colonization and Suppression of Pythium Damping-Off by the Antagonistic Bacteria Pseudomonas fluorescens and Bacillus subtilis. Schmidt CS; Agostini F; Leifert C; Killham K; Mullins CE Phytopathology; 2004 Apr; 94(4):351-63. PubMed ID: 18944111 [TBL] [Abstract][Full Text] [Related]
5. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Mazzola M; Gu YH Phytopathology; 2000 Feb; 90(2):114-9. PubMed ID: 18944598 [TBL] [Abstract][Full Text] [Related]
6. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere. Mazzola M; Cook RJ Appl Environ Microbiol; 1991 Aug; 57(8):2171-8. PubMed ID: 16348532 [TBL] [Abstract][Full Text] [Related]
7. Frequency, Virulence, and Metalaxyl Sensitivity of Pythium spp. Isolated from Apple Roots Under Conventional and Organic Production Systems. Mazzola M; Andrews PK; Reganold JP; Lévesque CA Plant Dis; 2002 Jun; 86(6):669-675. PubMed ID: 30823243 [TBL] [Abstract][Full Text] [Related]
8. Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. Thrane C; Harder Nielsen T ; Neiendam Nielsen M ; Sørensen J; Olsson S FEMS Microbiol Ecol; 2000 Aug; 33(2):139-146. PubMed ID: 10967213 [TBL] [Abstract][Full Text] [Related]
9. Identification and Quantification of Pathogenic Pythium spp. from Soils in Eastern Washington Using Real-Time Polymerase Chain Reaction. Schroeder KL; Okubara PA; Tambong JT; Lévesque CA; Paulitz TC Phytopathology; 2006 Jun; 96(6):637-47. PubMed ID: 18943182 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a brassicaceae species and time-dependent manner. Mazzola M; Brown J; Izzo AD; Cohen MF Phytopathology; 2007 Apr; 97(4):454-60. PubMed ID: 18943286 [TBL] [Abstract][Full Text] [Related]
11. Composition and distribution of pythium communities in wheat fields in eastern washington state. Paulitz TC; Adams K Phytopathology; 2003 Jul; 93(7):867-73. PubMed ID: 18943168 [TBL] [Abstract][Full Text] [Related]
12. Interactions Between Strains of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens in the Rhizosphere of Wheat. Landa BB; Mavrodi DM; Thomashow LS; Weller DM Phytopathology; 2003 Aug; 93(8):982-94. PubMed ID: 18943865 [TBL] [Abstract][Full Text] [Related]
13. Host Crop Affects Rhizosphere Colonization and Competitiveness of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens. De La Fuente L; Landa BB; Weller DM Phytopathology; 2006 Jul; 96(7):751-62. PubMed ID: 18943149 [TBL] [Abstract][Full Text] [Related]
14. Bacillus sp. L324-92 for Biological Control of Three Root Diseases of Wheat Grown with Reduced Tillage. Kim DS; Cook RJ; Weller DM Phytopathology; 1997 May; 87(5):551-8. PubMed ID: 18945111 [TBL] [Abstract][Full Text] [Related]
15. Pseudomonads contribute to regulation of Pratylenchus penetrans (Nematoda) populations on apple. Watson TT; Forge TA; Nelson LM Can J Microbiol; 2018 Nov; 64(11):775-785. PubMed ID: 29791808 [TBL] [Abstract][Full Text] [Related]
16. Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots. Mazzola M Phytopathology; 1999 Oct; 89(10):920-7. PubMed ID: 18944736 [TBL] [Abstract][Full Text] [Related]
17. The type III secretion system of biocontrol Pseudomonas fluorescens KD targets the phytopathogenic Chromista Pythium ultimum and promotes cucumber protection. Rezzonico F; Binder C; Défago G; Moënne-Loccoz Y Mol Plant Microbe Interact; 2005 Sep; 18(9):991-1001. PubMed ID: 16167769 [TBL] [Abstract][Full Text] [Related]
18. RpoN (sigma54) controls production of antifungal compounds and biocontrol activity in Pseudomonas fluorescens CHA0. Péchy-Tarr M; Bottiglieri M; Mathys S; Lejbølle KB; Schnider-Keel U; Maurhofer M; Keel C Mol Plant Microbe Interact; 2005 Mar; 18(3):260-72. PubMed ID: 15782640 [TBL] [Abstract][Full Text] [Related]
19. Interaction of Brassicaceous Seed Meal and Apple Rootstock on Recovery of Pythium spp. and Pratylenchus penetrans from Roots Grown in Replant Soils. Mazzola M; Brown J; Zhao X; Izzo AD; Fazio G Plant Dis; 2009 Jan; 93(1):51-57. PubMed ID: 30764268 [TBL] [Abstract][Full Text] [Related]