These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
55 related articles for article (PubMed ID: 18943710)
1. Use of Green Fluorescent Protein and Image Analysis to Quantify Proliferation of Trichoderma harzianum in Nonsterile Soil. Orr KA; Knudsen GR Phytopathology; 2004 Dec; 94(12):1383-9. PubMed ID: 18943710 [TBL] [Abstract][Full Text] [Related]
2. Differential Selection by Nematodes of an Introduced Biocontrol Fungus vs. Indigenous Fungi in Nonsterile Soil. Kim TG; Knudsen G J Microbiol Biotechnol; 2018 May; 28(5):831-838. PubMed ID: 29539878 [TBL] [Abstract][Full Text] [Related]
3. Comparison of real-time PCR and microscopy to evaluate sclerotial colonisation by a biocontrol fungus. Kim TG; Knudsen GR Fungal Biol; 2011; 115(4-5):317-25. PubMed ID: 21530913 [TBL] [Abstract][Full Text] [Related]
4. Influence of a Fungus-Feeding Nematode on Growth and Biocontrol Efficacy of Trichoderma harzianum. Bae YS; Knudsen GR Phytopathology; 2001 Mar; 91(3):301-6. PubMed ID: 18943350 [TBL] [Abstract][Full Text] [Related]
5. Cotransformation of Trichoderma harzianum with beta-glucuronidase and green fluorescent protein genes provides a useful tool for monitoring fungal growth and activity in natural soils. Bae YS; Knudsen GR Appl Environ Microbiol; 2000 Feb; 66(2):810-5. PubMed ID: 10653755 [TBL] [Abstract][Full Text] [Related]
6. Indigenous Fungivorous Nematodes Affect the Biocontrol Efficacy of Kim TG; Knudsen GR J Microbiol Biotechnol; 2021 Jun; 31(6):815-822. PubMed ID: 33782223 [TBL] [Abstract][Full Text] [Related]
7. Individual-based approach to modeling hyphal growth of a biocontrol fungus in soil. Knudsen GR; Stack JP; Schuhmann SO; Orr K; Lapaglia C Phytopathology; 2006 Oct; 96(10):1108-15. PubMed ID: 18943499 [TBL] [Abstract][Full Text] [Related]
8. Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. López-Mondéjar R; Antón A; Raidl S; Ros M; Pascual JA Bioresour Technol; 2010 Apr; 101(8):2888-91. PubMed ID: 19897358 [TBL] [Abstract][Full Text] [Related]
9. Use of monoclonal antibodies to quantify the dynamics of alpha-galactosidase and endo-1,4-beta-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat. Thornton CR Environ Microbiol; 2005 May; 7(5):737-49. PubMed ID: 15819855 [TBL] [Abstract][Full Text] [Related]
10. Accurate and rapid viability assessment of Trichoderma harzianum using fluorescence-based digital image analysis. Hassan M; Corkidi G; Galindo E; Flores C; Serrano-Carreón L Biotechnol Bioeng; 2002 Dec; 80(6):677-84. PubMed ID: 12378609 [TBL] [Abstract][Full Text] [Related]
11. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media. Beaulieu R; López-Mondéjar R; Tittarelli F; Ros M; Pascual JA Bioresour Technol; 2011 Feb; 102(3):2793-8. PubMed ID: 21030250 [TBL] [Abstract][Full Text] [Related]
12. Determining the environmental fate of a filamentous fungus, Trichoderma reesei, in laboratory-contained intact soil-core microcosms using competitive PCR and viability plating. Providenti MA; Mautner SI; Chaudhry O; Bombardier M; Scroggins R; Gregorich E; Smith ML Can J Microbiol; 2004 Aug; 50(8):623-31. PubMed ID: 15467788 [TBL] [Abstract][Full Text] [Related]
13. Mycophagous growth of Collimonas bacteria in natural soils, impact on fungal biomass turnover and interactions with mycophagous Trichoderma fungi. Höppener-Ogawa S; Leveau JH; van Veen JA; De Boer W ISME J; 2009 Feb; 3(2):190-8. PubMed ID: 18923455 [TBL] [Abstract][Full Text] [Related]
14. Use of green fluorescent protein-expressing Aspergillus fumigatus conidia to validate quantitative PCR analysis of air samples collected on filters. McDevitt JJ; Lees PS; Merz WG; Schwab KJ J Occup Environ Hyg; 2005 Dec; 2(12):633-40. PubMed ID: 16298948 [TBL] [Abstract][Full Text] [Related]
15. An image analysis technique to estimate the cell density and biomass concentration of Trichoderma reesei. Lecault V; Patel N; Thibault J Lett Appl Microbiol; 2009 Apr; 48(4):402-7. PubMed ID: 19187498 [TBL] [Abstract][Full Text] [Related]
16. Moist olive husks addition to a silty clay soil: influence on microbial and biochemical parameters. Perucci P; Dumontet S; Casucci C; Schnitzer M; Dinel H; Monaci E; Vischetti C J Environ Sci Health B; 2006; 41(6):1019-36. PubMed ID: 16893786 [TBL] [Abstract][Full Text] [Related]
17. Ecophysiological requirements and survival of a Trichoderma atroviride isolate with biocontrol potential. Longa CM; Pertot I; Tosi S J Basic Microbiol; 2008 Aug; 48(4):269-77. PubMed ID: 18720503 [TBL] [Abstract][Full Text] [Related]
18. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. Longa CM; Savazzini F; Tosi S; Elad Y; Pertot I J Appl Microbiol; 2009 May; 106(5):1549-57. PubMed ID: 19210568 [TBL] [Abstract][Full Text] [Related]
19. Effects of short-term exposure to air pollution on hospital admissions of young children for acute lower respiratory infections in Ho Chi Minh City, Vietnam. ; Le TG; Ngo L; Mehta S; Do VD; Thach TQ; Vu XD; Nguyen DT; Cohen A Res Rep Health Eff Inst; 2012 Jun; (169):5-72; discussion 73-83. PubMed ID: 22849236 [TBL] [Abstract][Full Text] [Related]
20. Comparison of different microbial biomass and activity measurement methods in metal-contaminated soils. Barajas-Aceves M Bioresour Technol; 2005 Aug; 96(12):1405-14. PubMed ID: 15792589 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]