These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 18943892)

  • 21. Off-tarp emissions, distribution, and efficacy of carbonated fumigants in a low permeability film tarped field.
    Qin R; Gao S; Thomas JE; Wang D; Hanson BD
    Sci Total Environ; 2017 Dec; 603-604():1-7. PubMed ID: 28609687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral movement of soil fumigants 1,3-dichloropropene and chloropicrin from treated agricultural fields.
    Wang D; Gao S; Qin R; Browne G
    J Environ Qual; 2010; 39(5):1800-6. PubMed ID: 21043285
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combinations of reduced rates of 1,3-dichloropropene and dazomet as a broad spectrum soil fumigation strategy in view of methyl bromide replacement.
    Van Wambeke E
    Commun Agric Appl Biol Sci; 2007; 72(2):61-70. PubMed ID: 18399425
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emissions from soil fumigation in two raised bed production systems tarped with low permeability films.
    Qin R; Gao S; Thomas JE; Dickson DW; Ajwa H; Wang D
    Chemosphere; 2013 Oct; 93(7):1379-85. PubMed ID: 23899923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Emissions of 1,3-Dichloropropene and Chloropicrin after Soil Fumigation under Field Conditions.
    Yates SR; Ashworth DJ; Zheng W; Zhang Q; Knuteson J; van Wessenbeeck IJ
    J Agric Food Chem; 2015 Jun; 63(22):5354-63. PubMed ID: 26001417
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Field tests of surface seals and soil treatments to reduce fumigant emissions from shank injection of Telone C35.
    Gao S; Qin R; McDonald JA; Hanson BD; Trout TJ
    Sci Total Environ; 2008 Nov; 405(1-3):206-14. PubMed ID: 18640704
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Emission, distribution and leaching of methyl isothiocyanate and chloropicrin under different surface containments.
    Zhang Y; Wang D
    Chemosphere; 2007 Jun; 68(3):445-54. PubMed ID: 17289109
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Drip application of methyl bromide alternative chemicals for control of soilborne pathogens and weeds.
    Gerik JS; Hanson BD
    Pest Manag Sci; 2011 Sep; 67(9):1129-33. PubMed ID: 21480465
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Life without methyl bromide: the Italian experience in replacing the fumigant.
    Gullino ML; Clini C; Garibaldi A
    Commun Agric Appl Biol Sci; 2005; 70(3):13-25. PubMed ID: 16637154
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chemical alternatives for soil fumigation with methyl bromide on tobacco seedbeds in nematode and weed control.
    Kutywayo V
    Commun Agric Appl Biol Sci; 2003; 68(4 Pt A):115-22. PubMed ID: 15149099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Distribution and leaching of methyl iodide in soil following emulated shank and drip application.
    Guo M; Zheng W; Papiernik SK; Yates SR
    J Environ Qual; 2004; 33(6):2149-56. PubMed ID: 15537937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fumigant combinations for Cyperus esculentum L control.
    Hutchinson CM; McGiffen ME; Sims JJ; Becker JO
    Pest Manag Sci; 2004 Apr; 60(4):369-74. PubMed ID: 15119599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biological approaches for control of root pathogens of strawberry.
    Martin FN; Bull CT
    Phytopathology; 2002 Dec; 92(12):1356-62. PubMed ID: 18943893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring flux of soil fumigants using the aerodynamic and dynamic flux chamber methods.
    van Wesenbeeck IJ; Knuteson JA; Barnekow DE; Phillips AM
    J Environ Qual; 2007; 36(3):613-20. PubMed ID: 17412897
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of Fumigation on the Reduction of
    Gu G; Murphy CM; Zheng J; Nou X; Rideout SL; Strawn LK
    Foodborne Pathog Dis; 2023 Dec; 20(12):563-569. PubMed ID: 37738333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of alternative strategies for management of soilborne pathogens currently controlled with methyl bromide.
    Martin FN
    Annu Rev Phytopathol; 2003; 41():325-50. PubMed ID: 14527332
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reassessment of the fungicidal efficacy of 1,3-dichloropropene, chloropicrin, and metam potassium against Macrophomina phaseolina in strawberry.
    Baggio JS; Cordova LG; Toledo BF; Noling JW; Peres NA
    Pest Manag Sci; 2022 Aug; 78(8):3416-3423. PubMed ID: 35544358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Replacing methyl bromide in annual strawberry production with glucosinolate-containing green manure crops.
    Lazzeri L; Baruzzi G; Malaguti L; Antoniacci L
    Pest Manag Sci; 2003 Sep; 59(9):983-90. PubMed ID: 12974349
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of application methods and plastic covers on distribution of cis- and trans-1,3-dichloropropene and chloropicrin in root zone.
    Ou LT; Thomas JE; Allen LH; McCormack LA; Vu JC; Dickson DW
    J Nematol; 2005 Dec; 37(4):483-8. PubMed ID: 19262895
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of Formulations of Allyl Isothiocyanate on Survival of Macrophomina phaseolina from Strawberry.
    Baggio JS; Chamorro M; Cordova LG; Noling JW; Vallad GE; Peres NA
    Plant Dis; 2018 Nov; 102(11):2212-2219. PubMed ID: 30222054
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.