These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 18943894)

  • 1. Cultural management of microbial community structure to enhance growth of apple in replant soils.
    Mazzola M; Granatstein DM; Elfving DC; Mullinix K; Gu YH
    Phytopathology; 2002 Dec; 92(12):1363-6. PubMed ID: 18943894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials.
    Mazzola M; Gu YH
    Phytopathology; 2000 Feb; 90(2):114-9. PubMed ID: 18944598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.
    Mazzola M; Gu YH
    Phytopathology; 2002 Dec; 92(12):1300-7. PubMed ID: 18943884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suppression of Specific Apple Root Pathogens by Brassica napus Seed Meal Amendment Regardless of Glucosinolate Content.
    Mazzola M; Granatstein DM; Elfving DC; Mullinix K
    Phytopathology; 2001 Jul; 91(7):673-9. PubMed ID: 18942997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the microbial complex having a causal role in the development of apple replant disease in washington.
    Mazzola M
    Phytopathology; 1998 Sep; 88(9):930-8. PubMed ID: 18944871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transformation of soil microbial community structure and rhizoctonia-suppressive potential in response to apple roots.
    Mazzola M
    Phytopathology; 1999 Oct; 89(10):920-7. PubMed ID: 18944736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action and efficacy of seed meal-induced pathogen suppression differ in a brassicaceae species and time-dependent manner.
    Mazzola M; Brown J; Izzo AD; Cohen MF
    Phytopathology; 2007 Apr; 97(4):454-60. PubMed ID: 18943286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulation of rhizosphere bacterial communities to induce suppressive soils.
    Mazzola M
    J Nematol; 2007 Sep; 39(3):213-20. PubMed ID: 19259490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pseudomonads contribute to regulation of Pratylenchus penetrans (Nematoda) populations on apple.
    Watson TT; Forge TA; Nelson LM
    Can J Microbiol; 2018 Nov; 64(11):775-785. PubMed ID: 29791808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and Pathogenicity of Rhizoctonia spp. Isolated from Apple Roots and Orchard Soils.
    Mazzola M
    Phytopathology; 1997 Jun; 87(6):582-7. PubMed ID: 18945073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon Source-Dependent Effects of Anaerobic Soil Disinfestation on Soil Microbiome and Suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans.
    Hewavitharana SS; Mazzola M
    Phytopathology; 2016 Sep; 106(9):1015-28. PubMed ID: 27143411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Brassicaceae Seed Meal Soil Amendment and Apple Rootstock Genotype on Microbiome Structure and Replant Disease Suppression.
    Wang L; Mazzola M
    Phytopathology; 2019 Apr; 109(4):607-614. PubMed ID: 30265201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward a holistic view of orchard ecosystem dynamics: A comprehensive review of the multiple factors governing development or suppression of apple replant disease.
    Somera TS; Mazzola M
    Front Microbiol; 2022; 13():949404. PubMed ID: 35958152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation.
    Mazzola M; Hewavitharana SS; Strauss SL
    Phytopathology; 2015 Apr; 105(4):460-9. PubMed ID: 25412009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.
    Mazzola M; Zhao X; Cohen MF; Raaijmakers JM
    Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative Field Efficacy of Management Strategies Containing Brassica napus Seed Meal or Green Manure for the Control of Apple Replant Disease.
    Mazzola M; Mullinix K
    Plant Dis; 2005 Nov; 89(11):1207-1213. PubMed ID: 30786445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field Evaluation of Reduced Rate Brassicaceae Seed Meal Amendment and Rootstock Genotype on the Microbiome and Control of Apple Replant Disease.
    Wang L; Mazzola M
    Phytopathology; 2019 Aug; 109(8):1378-1391. PubMed ID: 30887889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of natural soil suppressiveness to soilborne diseases.
    Mazzola M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Brassicaceous Seed Meal and Apple Rootstock on Recovery of Pythium spp. and Pratylenchus penetrans from Roots Grown in Replant Soils.
    Mazzola M; Brown J; Zhao X; Izzo AD; Fazio G
    Plant Dis; 2009 Jan; 93(1):51-57. PubMed ID: 30764268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Apple Root Microbiome as Indicator of Plant Adaptation to Apple Replant Diseased Soils.
    Ajeethan N; Ali S; Fuller KD; Abbey L; Yurgel SN
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.