These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 18943923)
1. Systemic Resistance Induced by Trichoderma spp.: Interactions Between the Host, the Pathogen, the Biocontrol Agent, and Soil Organic Matter Quality. Hoitink HA; Madden LV; Dorrance AE Phytopathology; 2006 Feb; 96(2):186-9. PubMed ID: 18943923 [TBL] [Abstract][Full Text] [Related]
2. Isolation and characterization of rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Krause MS; De Ceuster TJ; Tiquia SM; Michel FC; Madden LV; Hoitink HA Phytopathology; 2003 Oct; 93(10):1292-300. PubMed ID: 18944329 [TBL] [Abstract][Full Text] [Related]
3. Suppression of Botrytis Blight of Begonia by Trichoderma hamatum 382 in Peat and Compost-Amended Potting Mixes. Horst LE; Locke J; Krause CR; McMahon RW; Madden LV; Hoitink HAJ Plant Dis; 2005 Nov; 89(11):1195-1200. PubMed ID: 30786443 [TBL] [Abstract][Full Text] [Related]
4. Systemic Resistance Induced by Trichoderma hamatum 382 in Cucumber Against Phytophthora Crown Rot and Leaf Blight. Khan J; Ooka JJ; Miller SA; Madden LV; Hoitink HAJ Plant Dis; 2004 Mar; 88(3):280-286. PubMed ID: 30812360 [TBL] [Abstract][Full Text] [Related]
5. Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Abbasi PA; Miller SA; Meulia T; Hoitink HA; Kim JM Appl Environ Microbiol; 1999 Dec; 65(12):5421-6. PubMed ID: 10583998 [TBL] [Abstract][Full Text] [Related]
6. Systemic Modulation of Gene Expression in Tomato by Trichoderma hamatum 382. Alfano G; Ivey ML; Cakir C; Bos JI; Miller SA; Madden LV; Kamoun S; Hoitink HA Phytopathology; 2007 Apr; 97(4):429-37. PubMed ID: 18943283 [TBL] [Abstract][Full Text] [Related]
7. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Zhang W; Han DY; Dick WA; Davis KR; Hoitink HA Phytopathology; 1998 May; 88(5):450-5. PubMed ID: 18944926 [TBL] [Abstract][Full Text] [Related]
8. Suppression of Fusarium wilt by combining green compost and Trichoderma hamatum. Heremans B; Demeulenaere S; Haesaert G Commun Agric Appl Biol Sci; 2005; 70(3):181-4. PubMed ID: 16637174 [TBL] [Abstract][Full Text] [Related]
9. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Djonović S; Pozo MJ; Dangott LJ; Howell CR; Kenerley CM Mol Plant Microbe Interact; 2006 Aug; 19(8):838-53. PubMed ID: 16903350 [TBL] [Abstract][Full Text] [Related]
10. Compost suppressiveness against Phytophthora spp. on Skimmia japonica and azalea. Pugliese M; Gullino ML; Garibaldi A Commun Agric Appl Biol Sci; 2012; 77(3):237-40. PubMed ID: 23878978 [TBL] [Abstract][Full Text] [Related]
11. Involvement of Jasmonic Acid/Ethylene Signaling Pathway in the Systemic Resistance Induced in Cucumber by Trichoderma asperellum T203. Shoresh M; Yedidia I; Chet I Phytopathology; 2005 Jan; 95(1):76-84. PubMed ID: 18943839 [TBL] [Abstract][Full Text] [Related]
12. Effect of potting mix microbial carrying capacity on biological control of rhizoctonia damping-off of radish and rhizoctonia crown and root rot of poinsettia. Krause MS; Madden LV; Hoitink HA Phytopathology; 2001 Nov; 91(11):1116-23. PubMed ID: 18943449 [TBL] [Abstract][Full Text] [Related]
13. Use of monoclonal antibodies to quantify the dynamics of alpha-galactosidase and endo-1,4-beta-glucanase production by Trichoderma hamatum during saprotrophic growth and sporulation in peat. Thornton CR Environ Microbiol; 2005 May; 7(5):737-49. PubMed ID: 15819855 [TBL] [Abstract][Full Text] [Related]
14. A mini-bag technique for evaluation of fungicide effects on Trichoderma spp in mushroom compost. Abosriwil SO; Clancy KJ Pest Manag Sci; 2004 Apr; 60(4):350-8. PubMed ID: 15119597 [TBL] [Abstract][Full Text] [Related]
15. qRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media. Beaulieu R; López-Mondéjar R; Tittarelli F; Ros M; Pascual JA Bioresour Technol; 2011 Feb; 102(3):2793-8. PubMed ID: 21030250 [TBL] [Abstract][Full Text] [Related]
16. Compost suppressiveness against Phytophthora capsicion pepper in potting trials. Pugliese M; Marenco M; Gullino ML; Garibaldi A Commun Agric Appl Biol Sci; 2013; 78(3):551-3. PubMed ID: 25151829 [TBL] [Abstract][Full Text] [Related]
17. Suppression of Phytophthora cinnamomi in Potting Mixes Amended with Uncomposted and Composted Animal Manures. Aryantha IP; Cross R; Guest DI Phytopathology; 2000 Jul; 90(7):775-82. PubMed ID: 18944498 [TBL] [Abstract][Full Text] [Related]
18. Effects of Varying Environmental Conditions on Biological Control of Fusarium Wilt of Tomato by Nonpathogenic Fusarium spp. Larkin RP; Fravel DR Phytopathology; 2002 Nov; 92(11):1160-6. PubMed ID: 18944240 [TBL] [Abstract][Full Text] [Related]
19. Selection of genetically diverse Trichoderma spp. isolates for suppression of Phytophthora capsici on bell pepper. Roberts DP; Maul JE; McKenna LF; Emche SE; Meyer SL; Collins RT; Bowers JH Can J Microbiol; 2010 Oct; 56(10):864-73. PubMed ID: 20962910 [TBL] [Abstract][Full Text] [Related]
20. Systemic resistance induced in Arabidopsis thaliana by Trichoderma asperellum SKT-1, a microbial pesticide of seedborne diseases of rice. Yoshioka Y; Ichikawa H; Naznin HA; Kogure A; Hyakumachi M Pest Manag Sci; 2012 Jan; 68(1):60-6. PubMed ID: 21674754 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]