BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 18944229)

  • 1. Effects of Cellulytic Enzymes on Phytophthora cinnamomi.
    Downer AJ; Menge JA; Pond E
    Phytopathology; 2001 Sep; 91(9):839-46. PubMed ID: 18944229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Association of Cellulytic Enzyme Activities in Eucalyptus Mulches with Biological Control of Phytophthora cinnamomi.
    Downer AJ; Menge JA; Pond E
    Phytopathology; 2001 Sep; 91(9):847-55. PubMed ID: 18944230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellulase activity as a mechanism for suppression of phytophthora root rot in mulches.
    Richter BS; Ivors K; Shi W; Benson DM
    Phytopathology; 2011 Feb; 101(2):223-30. PubMed ID: 20879844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Gypsum on Zoospores and Sporangia of Phytophthora cinnamomi in Field Soil.
    Messenger BJ; Menge JA; Pond E
    Plant Dis; 2000 Jun; 84(6):617-621. PubMed ID: 30841099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel approaches and methods for quantifying Phytophthora cinnamomi in avocado tree roots.
    Masikane S; Jolliffe J; Swart L; McLeod A
    FEMS Microbiol Lett; 2019 Aug; 366(16):. PubMed ID: 31550364
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative sub-cellular proteome analyses reveals metabolic differentiation and production of effector-like molecules in the dieback phytopathogen Phytophthora cinnamomi.
    Andronis CE; Jacques S; Lipscombe R; Tan KC
    J Proteomics; 2022 Oct; 269():104725. PubMed ID: 36096432
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Gypsum Soil Amendments on Avocado Growth, Soil Drainage, and Resistance to Phytophthora cinnamomi.
    Messenger BJ; Menge JA; Pond E
    Plant Dis; 2000 Jun; 84(6):612-616. PubMed ID: 30841098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil.
    Sujkowski LS; Parra GR; Gumpertz ML; Ristaino JB
    Phytopathology; 2000 Feb; 90(2):148-56. PubMed ID: 18944603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An improved method to study Phytophthora cinnamomi Rands zoospores interactions with host.
    Del Castillo-González L; Soudani S; De La Cruz-Gómez N; Manzanera JA; Berrocal-Lobo M
    BMC Plant Biol; 2024 Jun; 24(1):508. PubMed ID: 38844843
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interactions of Phytophthora cinnamomi and Trichoderma spp. in relation to propagule production in soil cultures at 26 degrees C1.
    Kelley WD
    Can J Microbiol; 1977 Mar; 23(3):288-94. PubMed ID: 558040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phytophthora cinnamomi.
    Hardham AR
    Mol Plant Pathol; 2005 Nov; 6(6):589-604. PubMed ID: 20565682
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemotaxis of Zoospores for Root Exudates.
    Zentmyer GA
    Science; 1961 May; 133(3464):1595-6. PubMed ID: 17781128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Survival of Phytophthora cinnamomi as oospores, stromata, and thick-walled chlamydospores in roots of symptomatic and asymptomatic annual and herbaceous perennial plant species.
    Crone M; McComb JA; O'Brien PA; Hardy GE
    Fungal Biol; 2013 Feb; 117(2):112-23. PubMed ID: 23452949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytophthora nicotianae transformants lacking dynein light chain 1 produce non-flagellate zoospores.
    Narayan RD; Blackman LM; Shan W; Hardham AR
    Fungal Genet Biol; 2010 Aug; 47(8):663-71. PubMed ID: 20451645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence of Phosphite Tolerance in
    Hunter S; McDougal R; Williams N; Scott P
    Plant Dis; 2023 Feb; 107(2):393-400. PubMed ID: 36089692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium Interference with Zoospore Biology and Infectivity of Phytophthora parasitica in Nutrient Irrigation Solutions.
    von Broembsen SL; Deacon JW
    Phytopathology; 1997 May; 87(5):522-8. PubMed ID: 18945107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Production of Zoospores by Five Species of Phytophthora in Aqueous Environments for Use as Inocula.
    Ridge GA; Jeffers SN; Bridges WC; White SA
    Plant Dis; 2014 Apr; 98(4):551-558. PubMed ID: 30708732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Chemical Screening Identifies Compounds that Inhibit Different Stages of the
    Lawrence SA; Armstrong CB; Patrick WM; Gerth ML
    Front Microbiol; 2017; 8():1340. PubMed ID: 28769905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infectivity and Inoculum Production of Phytophthora ramorum on Roots of Eastern United States Oak Species.
    Widmer TL; Shishkoff N; Dodge SC
    Plant Dis; 2012 Nov; 96(11):1675-1682. PubMed ID: 30727464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Histopathological Study Reveals New Insights Into Responses of Chestnut (
    Fernandes P; Machado H; Silva MDC; Costa RL
    Phytopathology; 2021 Feb; 111(2):345-355. PubMed ID: 32755337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.