These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
547 related articles for article (PubMed ID: 18944296)
1. Infection by Meloidogyne artiellia does not break down resistance to races 0, 1a, and 2 of Fusarium oxysporum f. sp. ciceris in chickpea genotypes. Navas-Cortés JA; Landa BB; Rodríguez-López J; Jiménez-Díaz RM; Castillo P Phytopathology; 2008 Jun; 98(6):709-18. PubMed ID: 18944296 [TBL] [Abstract][Full Text] [Related]
2. Interactions Between Meloidogyne artiellia, the Cereal and Legume Root-Knot Nematode, and Fusarium oxysporum f. sp. ciceris Race 5 in Chickpea. Castillo P; Navas-Cortés JA; Gomar-Tinoco D; Di Vito M; Jiménez-Díaz RM Phytopathology; 2003 Dec; 93(12):1513-23. PubMed ID: 18943615 [TBL] [Abstract][Full Text] [Related]
3. A proteomic study of in-root interactions between chickpea pathogens: the root-knot nematode Meloidogyne artiellia and the soil-borne fungus Fusarium oxysporum f. sp. ciceris race 5. Palomares-Rius JE; Castillo P; Navas-Cortés JA; Jiménez-Díaz RM; Tena M J Proteomics; 2011 Sep; 74(10):2034-51. PubMed ID: 21640211 [TBL] [Abstract][Full Text] [Related]
4. In planta and soil quantification of Fusarium oxysporum f. sp. ciceris and evaluation of Fusarium wilt resistance in chickpea with a newly developed quantitative polymerase chain reaction assay. Jiménez-Fernández D; Montes-Borrego M; Jiménez-Díaz RM; Navas-Cortés JA; Landa BB Phytopathology; 2011 Feb; 101(2):250-62. PubMed ID: 21219129 [TBL] [Abstract][Full Text] [Related]
5. Interactions of Pratylenchus thornei and Fusarium oxysporum f. sp. ciceris on Chickpea. Castillo P; Mora-Rodríguez MP; Navas-Cortés JA; Jiménez-Díaz RM Phytopathology; 1998 Aug; 88(8):828-36. PubMed ID: 18944890 [TBL] [Abstract][Full Text] [Related]
6. Changes in the redox status of chickpea roots in response to infection by Fusarium oxysporum f. sp. ciceris: apoplastic antioxidant enzyme activities and expression of oxidative stress-related genes. García-Limones C; Dorado G; Navas-Cortés JA; Jiménez-Díaz RM; Tena M Plant Biol (Stuttg); 2009 Mar; 11(2):194-203. PubMed ID: 19228326 [TBL] [Abstract][Full Text] [Related]
7. A molecular insight into the early events of chickpea (Cicer arietinum) and Fusarium oxysporum f. sp. ciceri (race 1) interaction through cDNA-AFLP analysis. Gupta S; Chakraborti D; Rangi RK; Basu D; Das S Phytopathology; 2009 Nov; 99(11):1245-57. PubMed ID: 19821728 [TBL] [Abstract][Full Text] [Related]
8. Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Anjaiah V; Cornelis P; Koedam N Can J Microbiol; 2003 Feb; 49(2):85-91. PubMed ID: 12718396 [TBL] [Abstract][Full Text] [Related]
9. Trichoderma mediate early and enhanced lignifications in chickpea during Fusarium oxysporum f. sp. ciceris infection. Meshram S; Patel JS; Yadav SK; Kumar G; Singh DP; Singh HB; Sarma BK J Basic Microbiol; 2019 Jan; 59(1):74-86. PubMed ID: 30284310 [TBL] [Abstract][Full Text] [Related]
10. Quantitative and microscopic assessment of compatible and incompatible interactions between chickpea cultivars and Fusarium oxysporum f. sp. ciceris races. Jiménez-Fernández D; Landa BB; Kang S; Jiménez-Díaz RM; Navas-Cortés JA PLoS One; 2013; 8(4):e61360. PubMed ID: 23613839 [TBL] [Abstract][Full Text] [Related]
11. Temperature Response of Chickpea Cultivars to Races of Fusarium oxysporum f. sp. ciceris, Causal Agent of Fusarium Wilt. Landa BB; Navas-Cortés JA; Del Mar Jiménez-Gasco M; Katan J; Retig B; Jiménez-Díaz RM Plant Dis; 2006 Mar; 90(3):365-374. PubMed ID: 30786563 [TBL] [Abstract][Full Text] [Related]
12. Development of chickpea near-isogenic lines for Fusarium wilt. Castro P; Pistón F; Madrid E; Millán T; Gil J; Rubio J Theor Appl Genet; 2010 Nov; 121(8):1519-26. PubMed ID: 20652529 [TBL] [Abstract][Full Text] [Related]
14. Retention of Resistance to Fusarium oxysporum f. sp. niveum in Cucurbit Rootstocks Infected by Meloidogyne incognita. Keinath AP; Agudelo PA Plant Dis; 2018 Sep; 102(9):1820-1827. PubMed ID: 30125172 [TBL] [Abstract][Full Text] [Related]
15. A highly efficient Agrobacterium mediated transformation system for chickpea wilt pathogen Fusarium oxysporum f. sp. ciceri using DsRed-Express to follow root colonisation. Islam MN; Nizam S; Verma PK Microbiol Res; 2012 Jun; 167(6):332-8. PubMed ID: 22397973 [TBL] [Abstract][Full Text] [Related]
16. Genetics of Chickpea Resistance to Five Races of Fusarium Wilt and a Concise Set of Race Differentials for Fusarium oxysporum f. sp. ciceris. Sharma KD; Chen W; Muehlbauer FJ Plant Dis; 2005 Apr; 89(4):385-390. PubMed ID: 30795454 [TBL] [Abstract][Full Text] [Related]
17. Quantitative Modeling of the Effects of Temperature and Inoculum Density of Fusarium oxysporum f. sp. ciceris Races 0 and 5 on Development of Fusarium Wilt in Chickpea Cultivars. Navas-Cortés JA; Landa BB; Méndez-Rodríguez MA; Jiménez-Díaz RM Phytopathology; 2007 May; 97(5):564-73. PubMed ID: 18943575 [TBL] [Abstract][Full Text] [Related]
18. Plant tissue colonization by the fungus race 1.2 of Fusarium oxysporum f.sp. melonis in resistant melon genotypes. Chikh-Rouhou H; González-Torres R; Alvarez M Commun Agric Appl Biol Sci; 2009; 74(3):711-3. PubMed ID: 20222554 [TBL] [Abstract][Full Text] [Related]
19. Interactions between root-knot nematode Meloidogyne javanica and Fusarium wilt disease, Fusarium oxysporum f.sp. Melonis in different varieties of melon. Shokoohi E; Kheiri A; Etebarian HR; Roostaei A Commun Agric Appl Biol Sci; 2004; 69(3):387-91. PubMed ID: 15759439 [TBL] [Abstract][Full Text] [Related]
20. A newly developed real-time PCR assay for detection and quantification of Fusarium oxysporum and its use in compatible and incompatible interactions with grafted melon genotypes. Haegi A; Catalano V; Luongo L; Vitale S; Scotton M; Ficcadenti N; Belisario A Phytopathology; 2013 Aug; 103(8):802-10. PubMed ID: 23464901 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]