These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 18944450)
21. Seed Treatment with Phosphonate (AG3) Suppresses Pythium Damping-off of Cucumber Seedlings. Abbasi PA; Lazarovits G Plant Dis; 2006 Apr; 90(4):459-464. PubMed ID: 30786594 [TBL] [Abstract][Full Text] [Related]
22. Suppression of Rhizoctonia solani in Potting Mixtures Amended with Compost Made from Organic Household Waste. Tuitert G; Szczech M; Bollen GJ Phytopathology; 1998 Aug; 88(8):764-73. PubMed ID: 18944881 [TBL] [Abstract][Full Text] [Related]
23. Suppression of seed rot and preemergence of chickpea by seed treatments with fluorescent pseudomonads in Iran. Ahmadzadeh M; Sharifi-Tehrani A Commun Agric Appl Biol Sci; 2006; 71(3 Pt B):943-52. PubMed ID: 17390843 [TBL] [Abstract][Full Text] [Related]
24. Biocontrol of Damping-off of Catharanthus roseus Caused by Pythium ultimum with Trichoderma virens and Binucleate Rhizoctonia Fungi. Burns JR; Benson DM Plant Dis; 2000 Jun; 84(6):644-648. PubMed ID: 30841104 [TBL] [Abstract][Full Text] [Related]
25. Pythium Species Associated with Damping-off of Pea in Certified Organic Fields in the Columbia Basin of Central Washington. Alcala AVC; Paulitz TC; Schroeder KL; Porter LD; Derie ML; du Toit LJ Plant Dis; 2016 May; 100(5):916-925. PubMed ID: 30686151 [TBL] [Abstract][Full Text] [Related]
26. Field management effects on damping-off and early season vigor of crops in a transitional organic cropping system. Baysal F; Benitez MS; Kleinhenz MD; Miller SA; Gardener BB Phytopathology; 2008 May; 98(5):562-70. PubMed ID: 18943224 [TBL] [Abstract][Full Text] [Related]
27. Effect of potassium and manganese phosphites in the control of Pythium damping-off in soybean: a feasible alternative to fungicide seed treatments. Carmona MA; Sautua FJ; Grijalba PE; Cassina M; Pérez-Hernández O Pest Manag Sci; 2018 Feb; 74(2):366-374. PubMed ID: 28842951 [TBL] [Abstract][Full Text] [Related]
28. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations. Mazzola M; Zhao X; Cohen MF; Raaijmakers JM Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694 [TBL] [Abstract][Full Text] [Related]
29. Influence of Soil Temperature and Matric Potential on Sugar Beet Seedling Colonization and Suppression of Pythium Damping-Off by the Antagonistic Bacteria Pseudomonas fluorescens and Bacillus subtilis. Schmidt CS; Agostini F; Leifert C; Killham K; Mullins CE Phytopathology; 2004 Apr; 94(4):351-63. PubMed ID: 18944111 [TBL] [Abstract][Full Text] [Related]
30. Characters of aerated compost tea from immature compost that limit colonization of bean leaflets by Botrytis cinerea. Palmer AK; Evans KJ; Metcalf DA J Appl Microbiol; 2010 Nov; 109(5):1619-31. PubMed ID: 20629795 [TBL] [Abstract][Full Text] [Related]
31. Effectiveness of municipal waste compost and its humic fraction in suppressing Pythium ultimum. Pascual JA; Garcia C; Hernandez T; Lerma S; Lynch JM Microb Ecol; 2002 Jul; 44(1):59-68. PubMed ID: 12187376 [TBL] [Abstract][Full Text] [Related]
32. Disease Progression by Active Mycelial Growth and Biocontrol of Pythium ultimum var. ultimum Studied Using a Rhizobox System. Green H; Jensen DF Phytopathology; 2000 Sep; 90(9):1049-55. PubMed ID: 18944533 [TBL] [Abstract][Full Text] [Related]
33. Cotton Seedling Preemergence Damping-Off Incited by Rhizopus oryzae and Pythium spp. and Its Biological Control with Trichoderma spp. Howell CR Phytopathology; 2002 Feb; 92(2):177-80. PubMed ID: 18943091 [TBL] [Abstract][Full Text] [Related]
34. Compost and compost water extract-induced systemic acquired resistance in cucumber and Arabidopsis. Zhang W; Han DY; Dick WA; Davis KR; Hoitink HA Phytopathology; 1998 May; 88(5):450-5. PubMed ID: 18944926 [TBL] [Abstract][Full Text] [Related]
35. Inability to find consistent bacterial biocontrol agents of Pythium aphanidermatum in cucumber using screens based on ecophysiological traits. Folman LB; Postma J; van Veen JA Microb Ecol; 2003 Jan; 45(1):72-87. PubMed ID: 12469246 [TBL] [Abstract][Full Text] [Related]
36. Sensitivity of Pythium irregulare, P. sylvaticum, and P. ultimum from Forest Nurseries to Mefenoxam and Fosetyl-Al, and Control of Pythium Damping-off. Weiland JE; Santamaria L; Grünwald NJ Plant Dis; 2014 Jul; 98(7):937-942. PubMed ID: 30708838 [TBL] [Abstract][Full Text] [Related]
37. Mutation of a degS homologue in Enterobacter cloacae decreases colonization and biological control of damping-off on cucumber. Roberts DP; Lohrke SM; McKenna L; Lakshman DK; Kong H; Lydon J Phytopathology; 2011 Feb; 101(2):271-80. PubMed ID: 20942652 [TBL] [Abstract][Full Text] [Related]
38. Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. Ghaderian YSM; Lyon AJE; Baker AJM New Phytol; 2000 May; 146(2):219-224. PubMed ID: 33862969 [TBL] [Abstract][Full Text] [Related]
39. Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic actinomycetes. El-Tarabily KA; Nassar AH; Hardy GE; Sivasithamparam K J Appl Microbiol; 2009 Jan; 106(1):13-26. PubMed ID: 19120624 [TBL] [Abstract][Full Text] [Related]
40. Biological control of fusarium wilt of cucumber by chitinolytic bacteria. Singh PP; Shin YC; Park CS; Chung YR Phytopathology; 1999 Jan; 89(1):92-9. PubMed ID: 18944809 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]