These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 1894449)

  • 1. Use of Mpc-amino acids in solid phase peptide synthesis leads to improved coupling efficiencies.
    Schielen WJ; Adams HP; Nieuwenhuizen W; Tesser GI
    Int J Pept Protein Res; 1991 Apr; 37(4):341-6. PubMed ID: 1894449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asparagine coupling in Fmoc solid phase peptide synthesis.
    Gausepohl H; Kraft M; Frank RW
    Int J Pept Protein Res; 1989 Oct; 34(4):287-94. PubMed ID: 2599767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solid phase peptide synthesis utilizing 9-fluorenylmethoxycarbonyl amino acids.
    Fields GB; Noble RL
    Int J Pept Protein Res; 1990 Mar; 35(3):161-214. PubMed ID: 2191922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HBTU activation for automated Fmoc solid-phase peptide synthesis.
    Fields CG; Lloyd DH; Macdonald RL; Otteson KM; Noble RL
    Pept Res; 1991; 4(2):95-101. PubMed ID: 1815783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductance measurements in solid phase peptide synthesis. I. Monitoring coupling and deprotection in Fmoc chemistry.
    McFerran NV; Walker B; McGurk CD; Scott FC
    Int J Pept Protein Res; 1991 May; 37(5):382-7. PubMed ID: 1917293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The use of crown ethers in peptide chemistry-V. Solid-phase synthesis of peptides by the fragment condensation approach using crown ethers as non-covalent protecting groups.
    Botti P; Ball HL; Lucietto P; Pinori M; Rizzi E; Mascagni P
    J Pept Sci; 1996; 2(6):371-80. PubMed ID: 9230465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfonation of arginine residues as side reaction in Fmoc-peptide synthesis.
    Beck-Sickinger AG; Schnorrenberg G; Metzger J; Jung G
    Int J Pept Protein Res; 1991 Jul; 38(1):25-31. PubMed ID: 1938103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quaternary β
    Yu JS; Noda H; Shibasaki M
    Angew Chem Int Ed Engl; 2018 Jan; 57(3):818-822. PubMed ID: 29168280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and application of acid labile anchor groups for the synthesis of peptide amides by Fmoc-solid-phase peptide synthesis.
    Breipohl G; Knolle J; Stüber W
    Int J Pept Protein Res; 1989 Oct; 34(4):262-7. PubMed ID: 2599764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of peptide amides by Fmoc-solid-phase peptide synthesis and acid labile anchor groups.
    Stüber W; Knolle J; Breipohl G
    Int J Pept Protein Res; 1989 Sep; 34(3):215-21. PubMed ID: 2599759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-(N-Fmoc)-3-(N-Boc-N-methoxy)-diaminopropanoic acid, an amino acid for the synthesis of mimics of O-linked glycopeptides.
    Carrasco MR; Brown RT; Doan VH; Kandel SM; Lee FC
    Biopolymers; 2006; 84(4):414-20. PubMed ID: 16508952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-Phase synthesis of a dendritic peptide related to a retinoblastoma protein fragment utilizing a combined boc- and fmoc-chemistry approach.
    Cavallaro V; Thompson P; Hearn M
    J Pept Sci; 2001 May; 7(5):262-9. PubMed ID: 11428547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic procedure for N-Fmoc amino acyl-N-sulfanylethylaniline linker as crypto-peptide thioester precursor with application to native chemical ligation.
    Sakamoto K; Sato K; Shigenaga A; Tsuji K; Tsuda S; Hibino H; Nishiuchi Y; Otaka A
    J Org Chem; 2012 Aug; 77(16):6948-58. PubMed ID: 22816612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fmoc Solid-Phase Peptide Synthesis.
    Hansen PR; Oddo A
    Methods Mol Biol; 2015; 1348():33-50. PubMed ID: 26424261
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of cotton as a carrier for solid-phase peptide synthesis.
    Eichler J; Bienert M; Stierandova A; Lebl M
    Pept Res; 1991; 4(5):296-307. PubMed ID: 1802241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of protected peptidyl thioester intermediates for native chemical ligation by Nalpha-9-fluorenylmethoxycarbonyl (Fmoc) chemistry: considerations of side-chain and backbone anchoring strategies, and compatible protection for N-terminal cysteine.
    Gross CM; Lelièvre D; Woodward CK; Barany G
    J Pept Res; 2005 Mar; 65(3):395-410. PubMed ID: 15787970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convenient synthesis of N-methylamino acids compatible with Fmoc solid-phase peptide synthesis.
    Biron E; Kessler H
    J Org Chem; 2005 Jun; 70(13):5183-9. PubMed ID: 15960522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edman degradation sequence analysis of resin-bound peptides synthesized by 9-fluorenylmethoxycarbonyl chemistry.
    Fields CG; VanDrisse VL; Fields GB
    Pept Res; 1993; 6(1):39-47. PubMed ID: 8439735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Fmoc-N-(2-hydroxy-4-methoxybenzyl)amino acids in peptide synthesis.
    Zeng W; Regamey PO; Rose K; Wang Y; Bayer E
    J Pept Res; 1997 Mar; 49(3):273-9. PubMed ID: 9151261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The investigation of Fmoc-cysteine derivatives in solid phase peptide synthesis.
    McCurdy SN
    Pept Res; 1989; 2(1):147-52. PubMed ID: 2577698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.