These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 18944493)

  • 1. Effects of quadrat size and shape, initial epidemic conditions, and spore dispersal gradient on spatial statistics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 2000 Jul; 90(7):738-50. PubMed ID: 18944493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of initial epidemic conditions, sporulation rate, and spore dispersal gradient on the spatio-temporal dynamics of plant disease epidemics.
    Xu XM; Ridout MS
    Phytopathology; 1998 Oct; 88(10):1000-12. PubMed ID: 18944811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationships between several quadrat-based statistical measures used to characterize spatial aspects of disease incidence data.
    Ridout MS; Xu XM
    Phytopathology; 2000 Jun; 90(6):568-75. PubMed ID: 18944536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The explicit dependence of quadrat variance on the ratio of clump size to quadrat size.
    Ferrandino FJ
    Phytopathology; 2005 May; 95(5):452-62. PubMed ID: 18943309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal analysis of spread of infections by Verticillium dahliae pathotypes within a high tree density olive orchard in southern Spain.
    Navas-Cortés JA; Landa BB; Mercado-Blanco J; Trapero-Casas JL; Rodríguez-Jurado D; Jiménez-Díaz RM
    Phytopathology; 2008 Feb; 98(2):167-80. PubMed ID: 18943193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comments regarding the binary power law for heterogeneity of disease incidence.
    Turechek WW; Madden LV; Gent DH; Xu XM
    Phytopathology; 2011 Dec; 101(12):1396-407. PubMed ID: 21864088
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficiency of adaptive cluster sampling for estimating plant disease incidence.
    Ojiambo PS; Scherm H
    Phytopathology; 2010 Jul; 100(7):663-70. PubMed ID: 20528184
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal relationships between disease development and airborne inoculum in unmanaged and managed Botrytis leaf blight epidemics.
    Carisse O; Savary S; Willocquet L
    Phytopathology; 2008 Jan; 98(1):38-44. PubMed ID: 18943236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial Pattern Analysis of Sharka Disease (Plum pox virus Strain M) in Peach Orchards of Southern France.
    Dallot S; Gottwald T; Labonne G; Quiot JB
    Phytopathology; 2003 Dec; 93(12):1543-52. PubMed ID: 18943618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial pattern analysis of citrus canker-infected plantings in são paulo, Brazil, and augmentation of infection elicited by the asian leafminer.
    Gottwald TR; Bassanezi RB; Amorim L; Bergamin-Filho A
    Phytopathology; 2007 Jun; 97(6):674-83. PubMed ID: 18943598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Invasion of Phytophthora infestans at the landscape level: how do spatial scale and weather modulate the consequences of spatial heterogeneity in host resistance?
    Skelsey P; Rossing WA; Kessel GJ; van der Werf W
    Phytopathology; 2010 Nov; 100(11):1146-61. PubMed ID: 20932163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial pattern analysis of strawberry leaf blight in perennial production systems.
    Turechek WW; Madden LV
    Phytopathology; 1999 May; 89(5):421-33. PubMed ID: 18944756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial and temporal analyses of citrus sudden death as a tool to generate hypotheses concerning its etiology.
    Bassanezi RB; Bergamin Filho A; Amorim L; Gimenes-Fernandes N; Gottwald TR; Bové JM
    Phytopathology; 2003 Apr; 93(4):502-12. PubMed ID: 18944366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of dispersal gradient and pathogen life cycle components on epidemic velocity in computer simulations.
    Sackett KE; Mundt CC
    Phytopathology; 2005 Sep; 95(9):992-1000. PubMed ID: 18943297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-distance dispersal and accelerating waves of disease: empirical relationships.
    Mundt CC; Sackett KE; Wallace LD; Cowger C; Dudley JP
    Am Nat; 2009 Apr; 173(4):456-66. PubMed ID: 19249979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing rainfall- and temperature-based models to describe infection of canola under field conditions caused by pycnidiospores of Leptosphaeria maculans.
    Ghanbarnia K; Dilantha Fernando WG; Crow G
    Phytopathology; 2009 Jul; 99(7):879-86. PubMed ID: 19522586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial Patterns of Microsclerotia of Verticillium dahliae in Soil and Verticillium Wilt of Cauliflower.
    Xiao CL; Hao JJ; Subbarao KV
    Phytopathology; 1997 Mar; 87(3):325-31. PubMed ID: 18945176
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scenario approach for assessing the utility of dispersal information in decision support for aerially spread plant pathogens, applied to Phytophthora infestans.
    Skelsey P; Rossing WA; Kessel GJ; van der Werf W
    Phytopathology; 2009 Jul; 99(7):887-95. PubMed ID: 19522587
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focus expansion and stability of the spread parameter estimate of the power law model for dispersal gradients.
    Ojiambo PS; Gent DH; Mehra LK; Christie D; Magarey R
    PeerJ; 2017; 5():e3465. PubMed ID: 28649473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.