These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 1894450)

  • 1. Diastereoselective hydrolysis of peptide esters by alkaline protease. Preparation of racemization-free peptides.
    Chen ST; Wu SH; Wang KT
    Int J Pept Protein Res; 1991 Apr; 37(4):347-50. PubMed ID: 1894450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of industrial protease "Alcalase" in peptide synthesis.
    Chen ST; Chen SY; Hsiao SC; Wang KT
    Biomed Biochim Acta; 1991; 50(10-11):S181-6. PubMed ID: 1820041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the s-2 subsite selectivity of alkaline proteases in hydrolysis of diastereo-peptide esters and molecular-modeling interpretation.
    Chen ST; Tu CC; Chen SY; Huang HC; Wang KT
    Bioorg Med Chem; 1993 Nov; 1(5):361-7. PubMed ID: 8081866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtilisin-catalyzed synthesis of amino acid and peptide esters. Application in a two-step enzymatic ligation strategy.
    Liu CF; Tam JP
    Org Lett; 2001 Dec; 3(26):4157-9. PubMed ID: 11784166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrolysis of peptide esters by different enzymes.
    Reissmann S; Greiner G
    Int J Pept Protein Res; 1992 Aug; 40(2):110-3. PubMed ID: 1446967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A convenient chemoenzymatic synthesis of (4aS,5S)-(+)-4,4a,5,6,7,8-hexahydro-5-hydroxy-4a-methylnaphthalen-2(3H)-one.
    Lo LC; Shie JJ; Chou TC
    J Org Chem; 2002 Jan; 67(1):282-5. PubMed ID: 11777472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymatic synthesis of C-terminal arylamides of amino acids and peptides.
    Nuijens T; Cusan C; Kruijtzer JA; Rijkers DT; Liskamp RM; Quaedflieg PJ
    J Org Chem; 2009 Aug; 74(15):5145-50. PubMed ID: 19534522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the carboxyamidomethyl ester for subtilisin A-catalysed peptide synthesis.
    de Beer RJ; Nuijens T; Wiermans L; Quaedflieg PJ; Rutjes FP
    Org Biomol Chem; 2012 Sep; 10(33):6767-75. PubMed ID: 22814948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Nonspecific trypsin substrates in the enzymatic synthesis of peptides].
    Mitin IuV; Zapevalova NP; Zaĭtseva OR; Gorbunova EIu
    Bioorg Khim; 1994 Mar; 20(3):310-5. PubMed ID: 8166758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic approach to the synthesis of taurine-containing peptides.
    Cerovský V; Jakubke HD
    Int J Pept Protein Res; 1994 Nov; 44(5):466-71. PubMed ID: 7896505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alkaline protease catalysis of a secondary amine to form a peptide bond.
    Chen ST; Kao CL; Wang KT
    Int J Pept Protein Res; 1995; 46(3-4):314-9. PubMed ID: 8537185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiolsubtilisin as an instrument for peptide synthesis. Preparation and properties.
    Kolobanova SV; Lysogorskaya EN; Filippova IYu ; Anisimova VV; Oksenoit ES; Stepanov VM
    Biochemistry (Mosc); 1997 Mar; 62(3):329-36. PubMed ID: 9275305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic and conformational changes induced by limited subtilisin cleavage of bovine carboxypeptidase A.
    Solomon BM; Larsen KS; Riordan JF
    Biochemistry; 1990 Aug; 29(31):7303-9. PubMed ID: 1698455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of Alcalase in the production of bioactive peptides: A review.
    Tacias-Pascacio VG; Morellon-Sterling R; Siar EH; Tavano O; Berenguer-Murcia Á; Fernandez-Lafuente R
    Int J Biol Macromol; 2020 Dec; 165(Pt B):2143-2196. PubMed ID: 33091472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The elastolytic properties of subtilisin GX from alkalophilic Bacillus sp. strain 6644 provides a means of differentiation from other subtilisins.
    Durham DR
    Biochem Biophys Res Commun; 1993 Aug; 194(3):1365-70. PubMed ID: 8352796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary specificity of alakaline mesentericopeptidase. Kinetic parameters for the hydrolysis of alpha-N-acetyl-L-amino acid methyl esters.
    Stambolieva N; Chakarova R
    Int J Pept Protein Res; 1978 Jan; 11(1):37-41. PubMed ID: 631984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and tryptic hydrolysis of p-guanidinophenyl esters derived from amino acids and peptides.
    Sekizaki H; Itoh K; Toyota E; Tanizawa K
    Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1577-9. PubMed ID: 8795276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate specificity of an actively assembling amyloid catalyst.
    Heier JL; Mikolajczak DJ; Böttcher C; Koksch B
    Biopolymers; 2017 Jan; 108(1):. PubMed ID: 27858968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approaches to peptide synthesis with the help of trypsin.
    Mitin YuV ; Zapevalova NP; Gorbunova EYu
    Biomed Biochim Acta; 1991; 50(10-11):S74-9. PubMed ID: 1820064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design and high-resolution structure of a β³-peptide bundle catalyst.
    Wang PS; Nguyen JB; Schepartz A
    J Am Chem Soc; 2014 May; 136(19):6810-3. PubMed ID: 24802883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.