These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 1894450)
21. Hydrolysis of small peptide substrates parallels binding of chymotrypsin inhibitor 2 for mutants of subtilisin BPN'. Eder J; Rheinnecker M; Fersht AR FEBS Lett; 1993 Dec; 335(3):349-52. PubMed ID: 8262182 [TBL] [Abstract][Full Text] [Related]
22. Extensive comparison of the substrate preferences of two subtilisins as determined with peptide substrates which are based on the principle of intramolecular quenching. Grøn H; Meldal M; Breddam K Biochemistry; 1992 Jul; 31(26):6011-8. PubMed ID: 1627543 [TBL] [Abstract][Full Text] [Related]
24. Alcalase-catalysed synthesis of the precursor tetrapeptide N-benzoylarginylglycylaspartylserinamide (Bz-RGDS-NH2) of the cell-adhesion peptide arginylglycylaspartylserine (RGDS). Huang YB; Yang S; Cai Y; Wang H; Gao G; Wu XX; Xu L; Zhang XZ Biotechnol Appl Biochem; 2008 Nov; 51(Pt 3):119-27. PubMed ID: 18248327 [TBL] [Abstract][Full Text] [Related]
25. Production of ACE inhibitory peptides from sweet sorghum grain protein using alcalase: Hydrolysis kinetic, purification and molecular docking study. Wu Q; Du J; Jia J; Kuang C Food Chem; 2016 May; 199():140-9. PubMed ID: 26775955 [TBL] [Abstract][Full Text] [Related]
26. Trypsin-specific acyl-4-guanidinophenyl esters for alpha-chymotrypsin-catalysed reactions computational predictions, hydrolyses, and peptide bond formation. Günther R; Thust S; Hofmann HJ; Bordusa F Eur J Biochem; 2000 Jun; 267(12):3496-501. PubMed ID: 10848965 [TBL] [Abstract][Full Text] [Related]
27. Enantioselective ester hydrolysis catalyzed by beta-cyclodextrin conjugated with beta-hairpin peptides. Tsutsumi H; Ikeda H; Mihara H; Ueno A Bioorg Med Chem Lett; 2004 Feb; 14(3):723-6. PubMed ID: 14741276 [TBL] [Abstract][Full Text] [Related]
29. Cysteine racemization in peptide synthesis: a new and easy detection method. Siedler F; Weyher E; Moroder L J Pept Sci; 1996; 2(4):271-5. PubMed ID: 9231335 [TBL] [Abstract][Full Text] [Related]
30. Enzymatic hydrolysis of heated whey: iron-binding ability of peptides and antigenic protein fractions. Kim SB; Seo IS; Khan MA; Ki KS; Lee WS; Lee HJ; Shin HS; Kim HS J Dairy Sci; 2007 Sep; 90(9):4033-42. PubMed ID: 17699019 [TBL] [Abstract][Full Text] [Related]
31. Probing the mechanism and improving the rate of substrate-assisted catalysis in subtilisin BPN'. Carter P; Abrahmsén L; Wells JA Biochemistry; 1991 Jun; 30(25):6142-8. PubMed ID: 2059622 [TBL] [Abstract][Full Text] [Related]
32. Peptide synthesis using carbamoylmethyl esters as acyl donors mediated by Bacillus amyloliquefaciens protease. Miyazawa T; Shindo T; Murashima T; Yamada T Protein Pept Lett; 2008; 15(10):1050-4. PubMed ID: 19075814 [TBL] [Abstract][Full Text] [Related]
33. Trypsin-catalyzed peptide synthesis and various p-guanidinophenyl esters as acyl donors. Sekizaki H; Itoh K; Toyota E; Tanizawa K Chem Pharm Bull (Tokyo); 1996 Aug; 44(8):1585-7. PubMed ID: 8795277 [TBL] [Abstract][Full Text] [Related]
34. Enzymatic manipulation of protecting groups: more than deprotection. Hermann P Biomed Biochim Acta; 1991; 50(10-11):S19-31. PubMed ID: 1820043 [TBL] [Abstract][Full Text] [Related]
35. Identification and hydrolysis kinetic of a novel antioxidant peptide from pecan meal using Alcalase. Hu F; Ci AT; Wang H; Zhang YY; Zhang JG; Thakur K; Wei ZJ Food Chem; 2018 Sep; 261():301-310. PubMed ID: 29739598 [TBL] [Abstract][Full Text] [Related]
36. Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg. Zhang F; Qu J; Thakur K; Zhang JG; Mocan A; Wei ZJ Food Chem; 2019 Jul; 285():266-274. PubMed ID: 30797344 [TBL] [Abstract][Full Text] [Related]
37. Enantiocomplementary enzymatic resolution of the chiral auxiliary: cis,cis-6-(2,2-dimethylpropanamido)spiro[4.4]nonan-1-ol and the molecular basis for the high enantioselectivity of subtilisin Carlsberg. Mugford PF; Lait SM; Keay BA; Kazlauskas RJ Chembiochem; 2004 Jul; 5(7):980-7. PubMed ID: 15239056 [TBL] [Abstract][Full Text] [Related]
38. Modulation of protease specificity by a change in the enzyme microenvironment. Selectivity modification on a model substrate, purified soluble proteins and gluten. Hertmanni P; Picque E; Thomas D; Larreta-Garde V FEBS Lett; 1991 Feb; 279(1):123-31. PubMed ID: 1899835 [TBL] [Abstract][Full Text] [Related]
39. Designed four-helix bundle catalysts--the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters. Baltzer L; Broo KS; Nilsson H; Nilsson J Bioorg Med Chem; 1999 Jan; 7(1):83-91. PubMed ID: 10199659 [TBL] [Abstract][Full Text] [Related]
40. Kinetically controlled synthesis of dipeptides using ficin as biocatalyst. Monter B; Herzog B; Stehle P; Fürst P Biotechnol Appl Biochem; 1991 Oct; 14(2):183-91. PubMed ID: 1760130 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]