These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18944736)

  • 21. The influence of Bacillus subtilis RB14-C on the development of Rhizoctonia solani and indigenous microorganisms in the soil.
    Szczech M; Shoda M
    Can J Microbiol; 2005 May; 51(5):405-11. PubMed ID: 16088336
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation.
    Huang X; Liu L; Wen T; Zhang J; Wang F; Cai Z
    Appl Microbiol Biotechnol; 2016 Jun; 100(12):5581-93. PubMed ID: 26875875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature, moisture, and fungicide effects in managing Rhizoctonia root and crown rot of sugar beet.
    Bolton MD; Panella L; Campbell L; Khan MF
    Phytopathology; 2010 Jul; 100(7):689-97. PubMed ID: 20528187
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Apple Root Microbiome as Indicator of Plant Adaptation to Apple Replant Diseased Soils.
    Ajeethan N; Ali S; Fuller KD; Abbey L; Yurgel SN
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect on microbial communities in apple orchard soil when exposed short-term to climate change abiotic factors and different orchard management practices.
    Cook C; Magan N; Robinson-Boyer L; Xu X
    J Appl Microbiol; 2023 Mar; 134(3):. PubMed ID: 36631297
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease.
    Kyselková M; Kopecký J; Frapolli M; Défago G; Ságová-Marecková M; Grundmann GL; Moënne-Loccoz Y
    ISME J; 2009 Oct; 3(10):1127-38. PubMed ID: 19554036
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Field Evaluation of Reduced Rate Brassicaceae Seed Meal Amendment and Rootstock Genotype on the Microbiome and Control of Apple Replant Disease.
    Wang L; Mazzola M
    Phytopathology; 2019 Aug; 109(8):1378-1391. PubMed ID: 30887889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.
    Schroeder KL; Paulitz TC
    Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato.
    Larkin RP; Honeycutt CW
    Phytopathology; 2006 Jan; 96(1):68-79. PubMed ID: 18944206
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Isolation, Identification, and Antibacterial Mechanisms of
    Duan Y; Chen R; Zhang R; Jiang W; Chen X; Yin C; Mao Z
    Front Microbiol; 2021; 12():746799. PubMed ID: 34603274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO(2).
    Drigo B; van Veen JA; Kowalchuk GA
    ISME J; 2009 Oct; 3(10):1204-17. PubMed ID: 19536195
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of Brassicaceae Seed Meal Soil Amendment and Apple Rootstock Genotype on Microbiome Structure and Replant Disease Suppression.
    Wang L; Mazzola M
    Phytopathology; 2019 Apr; 109(4):607-614. PubMed ID: 30265201
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitin- and Keratin-Rich Soil Amendments Suppress Rhizoctonia solani Disease via Changes to the Soil Microbial Community.
    Andreo-Jimenez B; Schilder MT; Nijhuis EH; Te Beest DE; Bloem J; Visser JHM; van Os G; Brolsma K; de Boer W; Postma J
    Appl Environ Microbiol; 2021 May; 87(11):. PubMed ID: 33771785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing.
    Penton CR; Gupta VV; Tiedje JM; Neate SM; Ophel-Keller K; Gillings M; Harvey P; Pham A; Roget DK
    PLoS One; 2014; 9(4):e93893. PubMed ID: 24699870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocontrol of Phytophthora cactorum the causal agent of root and crown rot on apple (Malus domestica) by formulated Pseudomonas fluorescens.
    Farzaneh M; Sharifi-Tehrani A; Ahmadzadeh M; Zad J
    Commun Agric Appl Biol Sci; 2007; 72(4):891-900. PubMed ID: 18396826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rhizosphere microbial community structure at different maize plant growth stages and root locations.
    Cavaglieri L; Orlando J; Etcheverry M
    Microbiol Res; 2009; 164(4):391-9. PubMed ID: 17524636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of natural soil suppressiveness to soilborne diseases.
    Mazzola M
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):557-64. PubMed ID: 12448751
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microbial populations responsible for specific soil suppressiveness to plant pathogens.
    Weller DM; Raaijmakers JM; Gardener BB; Thomashow LS
    Annu Rev Phytopathol; 2002; 40():309-48. PubMed ID: 12147763
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi.
    Berg G; Krechel A; Ditz M; Sikora RA; Ulrich A; Hallmann J
    FEMS Microbiol Ecol; 2005 Jan; 51(2):215-29. PubMed ID: 16329870
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.