These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18944741)

  • 1. Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat.
    Schoeny A; Lucas P
    Phytopathology; 1999 Oct; 89(10):954-61. PubMed ID: 18944741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of crop management on take-all development and disease cycles on winter wheat.
    Colbach N; Lucas P; Meynard JM
    Phytopathology; 1997 Jan; 87(1):26-32. PubMed ID: 18945150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of take-all epidemics on winter wheat yield formation and yield loss.
    Schoeny A; Jeuffroy MH; Lucas P
    Phytopathology; 2001 Jul; 91(7):694-701. PubMed ID: 18943000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linear relationship between Gaeumannomyces graminis var. tritici (Ggt) genotypic frequencies and disease severity on wheat roots in the field.
    Lebreton L; Gosme M; Lucas P; Guillerm-Erckelboudt AY; Sarniguet A
    Environ Microbiol; 2007 Feb; 9(2):492-9. PubMed ID: 17222147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamics of primary and secondary infection in take-all epidemics.
    Bailey DJ; Gilligan CA
    Phytopathology; 1999 Jan; 89(1):84-91. PubMed ID: 18944808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and analysis of disease-induced host growth in the epidemiology of take-all.
    Bailey DJ; Gilligan CA
    Phytopathology; 2004 May; 94(5):535-40. PubMed ID: 18943774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping.
    Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A
    Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Yield Responses of Direct-Seeded Wheat to Rhizobacteria and Fungicide Seed Treatments.
    Cook RJ; Weller DM; El-Banna AY; Vakoch D; Zhang H
    Plant Dis; 2002 Jul; 86(7):780-784. PubMed ID: 30818577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.
    Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population Dynamics of Bacillus sp. L324-92R(12) and Pseudomonas fluorescens 2-79RN(10) in the Rhizosphere of Wheat.
    Kim DS; Weller DM; Cook RJ
    Phytopathology; 1997 May; 87(5):559-64. PubMed ID: 18945112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Placement of Inoculum of Gaeumannomyces graminis var. tritici on Severity of Take-all in Winter Wheat.
    Kabbage M; Bockus WW
    Plant Dis; 2002 Mar; 86(3):298-303. PubMed ID: 30818611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state.
    Kwak YS; Bakker PA; Glandorf DC; Rice JT; Paulitz TC; Weller DM
    Phytopathology; 2009 May; 99(5):472-9. PubMed ID: 19351242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epidemics of ray blight on pyrethrum are linked to seed contamination and overwintering inoculum of Phoma ligulicola var. inoxydabilis.
    Pethybridge SJ; Gent DH; Hay FS
    Phytopathology; 2011 Sep; 101(9):1112-21. PubMed ID: 21501088
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting Take-All Severity in Second-Year Wheat Using Soil DNA Concentrations of Gaeumannomyces graminis var. tritici Determined with qPCR.
    Bithell SL; McKay A; Butler RC; Herdina ; Ophel-Keller K; Hartley D; Cromey MG
    Plant Dis; 2012 Mar; 96(3):443-451. PubMed ID: 30727140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gaeumannomyces graminis, the take-all fungus and its relatives.
    Freeman J; Ward E
    Mol Plant Pathol; 2004 Jul; 5(4):235-52. PubMed ID: 20565593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacillus sp. L324-92 for Biological Control of Three Root Diseases of Wheat Grown with Reduced Tillage.
    Kim DS; Cook RJ; Weller DM
    Phytopathology; 1997 May; 87(5):551-8. PubMed ID: 18945111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Field assessment of a model for fungicide effects on intraplant spread of stem rust in perennial ryegrass seed crops.
    Pfender WF; Eynard J
    Phytopathology; 2009 Jun; 99(6):696-703. PubMed ID: 19453228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
    MaciĆ”-Vicente JG; Jansson HB; Mendgen K; Lopez-Llorca LV
    Can J Microbiol; 2008 Aug; 54(8):600-9. PubMed ID: 18772922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay.
    Herdina ; Neate S; Jabaji-Hare S; Ophel-Keller K
    FEMS Microbiol Ecol; 2004 Feb; 47(2):143-52. PubMed ID: 19712330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of break crops, and of wheat volunteers growing in break crops or in set-aside or conservation covers, all following crops of winter wheat, on the development of take-all (
    Jenkyn J; Gutteridge R; White R
    Ann Appl Biol; 2014 Nov; 165(3):340-363. PubMed ID: 25653455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.