BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

40 related articles for article (PubMed ID: 18944747)

  • 1. Comparison of Ethylene Production by Pseudomonas syringae and Ralstonia solanacearum.
    Weingart H; Völksch B; Ullrich MS
    Phytopathology; 1999 May; 89(5):360-5. PubMed ID: 18944747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of procedures for induction and cultivation of Pseudomonas syringae pv. pisi L-form.
    Elvira-Recuenco M; van Vuurde JW
    Microbiol Res; 2003; 158(4):271-9. PubMed ID: 14717447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological formation of ethylene.
    Hausinger RP; Rifayee SBJS; Thomas MG; Chatterjee S; Hu J; Christov CZ
    RSC Chem Biol; 2023 Aug; 4(9):635-646. PubMed ID: 37654506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overcoming substrate limitations for improved production of ethylene in E. coli.
    Lynch S; Eckert C; Yu J; Gill R; Maness PC
    Biotechnol Biofuels; 2016; 9():3. PubMed ID: 26734073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phylogenesis of the Functional 1-Aminocyclopropane-1-Carboxylate Oxidase of Fungi and Plants.
    Li Y; Qi M; Zhang Q; Xu Z; Zhang Y; Gao Y; Qi Y; Qiu L; Wang M
    J Fungi (Basel); 2022 Dec; 9(1):. PubMed ID: 36675876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge.
    Fatma M; Asgher M; Iqbal N; Rasheed F; Sehar Z; Sofo A; Khan NA
    Plants (Basel); 2022 Aug; 11(17):. PubMed ID: 36079592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Comparison of Rhizospheric and Endophytic Bacteria in Early and Late-Maturing Pumpkin Varieties.
    Chen S; Qin R; Yang D; Liu W; Yang S
    Microorganisms; 2022 Aug; 10(8):. PubMed ID: 36014084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ethylene production by overexpressing phosphoenolpyruvate carboxylase in the cyanobacterium
    Durall C; Lindberg P; Yu J; Lindblad P
    Biotechnol Biofuels; 2020; 13():16. PubMed ID: 32010220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct
    Kelly S; Mun T; Stougaard J; Ben C; Andersen SU
    Front Plant Sci; 2018; 9():1218. PubMed ID: 30177945
    [No Abstract]   [Full Text] [Related]  

  • 10. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses.
    Gao SS; Naowarojna N; Cheng R; Liu X; Liu P
    Nat Prod Rep; 2018 Aug; 35(8):792-837. PubMed ID: 29932179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structures and Mechanisms of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme: Substrate Binding Creates a Twist.
    Martinez S; Fellner M; Herr CQ; Ritchie A; Hu J; Hausinger RP
    J Am Chem Soc; 2017 Aug; 139(34):11980-11988. PubMed ID: 28780854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and Spectroscopic Characterization of the Non-Heme Fe(II)- and 2-Oxoglutarate-Dependent Ethylene-Forming Enzyme from Pseudomonas syringae pv. phaseolicola PK2.
    Martinez S; Hausinger RP
    Biochemistry; 2016 Nov; 55(43):5989-5999. PubMed ID: 27749027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomics-Based Exploration of Virulence Determinants and Host-Specific Adaptations of Pseudomonas syringae Strains Isolated from Grasses.
    Dudnik A; Dudler R
    Pathogens; 2014 Jan; 3(1):121-48. PubMed ID: 25437611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative sequence analysis and mutagenesis of ethylene forming enzyme (EFE) 2-oxoglutarate/Fe(II)-dependent dioxygenase homologs.
    Johansson N; Persson KO; Larsson C; Norbeck J
    BMC Biochem; 2014 Oct; 15():22. PubMed ID: 25278273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The evolution of ethylene signaling in plant chemical ecology.
    Groen SC; Whiteman NK
    J Chem Ecol; 2014 Jul; 40(7):700-16. PubMed ID: 24997626
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of factors for improved ethylene production via the ethylene forming enzyme in chemostat cultures of Saccharomyces cerevisiae.
    Johansson N; Quehl P; Norbeck J; Larsson C
    Microb Cell Fact; 2013 Oct; 12():89. PubMed ID: 24083346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas savastanoi pv. savastanoi: some like it knot.
    Ramos C; Matas IM; Bardaji L; Aragón IM; Murillo J
    Mol Plant Pathol; 2012 Dec; 13(9):998-1009. PubMed ID: 22805238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of bacterial ethylene-forming enzyme gene in Trichoderma reesei enhanced the production of ethylene.
    Chen X; Liang Y; Hua J; Tao L; Qin W; Chen S
    Int J Biol Sci; 2010 Feb; 6(1):96-106. PubMed ID: 20150979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic analysis of the pPT23A plasmid family of Pseudomonas syringae.
    Ma Z; Smith JJ; Zhao Y; Jackson RW; Arnold DL; Murillo J; Sundin GW
    Appl Environ Microbiol; 2007 Feb; 73(4):1287-95. PubMed ID: 17114318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition.
    Joardar V; Lindeberg M; Jackson RW; Selengut J; Dodson R; Brinkac LM; Daugherty SC; Deboy R; Durkin AS; Giglio MG; Madupu R; Nelson WC; Rosovitz MJ; Sullivan S; Crabtree J; Creasy T; Davidsen T; Haft DH; Zafar N; Zhou L; Halpin R; Holley T; Khouri H; Feldblyum T; White O; Fraser CM; Chatterjee AK; Cartinhour S; Schneider DJ; Mansfield J; Collmer A; Buell CR
    J Bacteriol; 2005 Sep; 187(18):6488-98. PubMed ID: 16159782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 2.