BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 18944808)

  • 1. Dynamics of primary and secondary infection in take-all epidemics.
    Bailey DJ; Gilligan CA
    Phytopathology; 1999 Jan; 89(1):84-91. PubMed ID: 18944808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epidemiology and chemical control of take-all on seminal and adventitious roots of wheat.
    Bailey DJ; Paveley N; Pillinger C; Foulkes J; Spink J; Gilligan CA
    Phytopathology; 2005 Jan; 95(1):62-8. PubMed ID: 18943837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Epidemiological Analysis of the Role of Disease-Induced Root Growth in the Differential Response of Two Cultivars of Winter Wheat to Infection by Gaeumannomyces graminis var. tritici.
    Bailey DJ; Kleczkowski A; Gilligan CA
    Phytopathology; 2006 May; 96(5):510-6. PubMed ID: 18944311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling of early infection of cereal roots by the take-all fungus: a detailed mechanistic simulator.
    Gilligan CA; Brassett PR; Campbell A
    New Phytol; 1994 Nov; 128(3):515-537. PubMed ID: 33874569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of crop management on take-all development and disease cycles on winter wheat.
    Colbach N; Lucas P; Meynard JM
    Phytopathology; 1997 Jan; 87(1):26-32. PubMed ID: 18945150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling and analysis of disease-induced host growth in the epidemiology of take-all.
    Bailey DJ; Gilligan CA
    Phytopathology; 2004 May; 94(5):535-40. PubMed ID: 18943774
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The dynamics of infection by the take-all fungus on seminal roots of wheat: sensitivity analysis of a stochastic simulation model.
    Gilligan CA
    New Phytol; 1994 Nov; 128(3):539-553. PubMed ID: 33874571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of crop growth and canopy filtration on the dynamics of plant disease epidemics spread by aerially dispersed spores.
    Ferrandino FJ
    Phytopathology; 2008 May; 98(5):492-503. PubMed ID: 18943216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal and Spatial Dynamics of Primary and Secondary Infection by Armillaria ostoyae in a Pinus pinaster Plantation.
    Lung-Escarmant B; Guyon D
    Phytopathology; 2004 Feb; 94(2):125-31. PubMed ID: 18943534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp.
    Barret M; Frey-Klett P; Guillerm-Erckelboudt AY; Boutin M; Guernec G; Sarniguet A
    Mol Plant Microbe Interact; 2009 Dec; 22(12):1611-23. PubMed ID: 19888826
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal Dynamics of Phytophthora Blight on Bell Pepper in Relation to the Mechanisms of Dispersal of Primary Inoculum of Phytophthora capsici in Soil.
    Sujkowski LS; Parra GR; Gumpertz ML; Ristaino JB
    Phytopathology; 2000 Feb; 90(2):148-56. PubMed ID: 18944603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat.
    Schoeny A; Lucas P
    Phytopathology; 1999 Oct; 89(10):954-61. PubMed ID: 18944741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Take-All Severity in Second-Year Wheat Using Soil DNA Concentrations of Gaeumannomyces graminis var. tritici Determined with qPCR.
    Bithell SL; McKay A; Butler RC; Herdina ; Ophel-Keller K; Hartley D; Cromey MG
    Plant Dis; 2012 Mar; 96(3):443-451. PubMed ID: 30727140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of some benzoxazinoids on in vitro growth of Cephalosporium gramineum and other fungi pathogenic to cereals and on Cephalosporium stripe of winter wheat.
    Martyniuk S; Stochmal A; Macías FA; Marín D; Oleszek W
    J Agric Food Chem; 2006 Feb; 54(4):1036-9. PubMed ID: 16478214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in population structure of the soilborne fungus Gaeumannomyces graminis var. tritici during continuous wheat cropping.
    Lebreton L; Lucas P; Dugas F; Guillerm AY; Schoeny A; Sarniguet A
    Environ Microbiol; 2004 Nov; 6(11):1174-85. PubMed ID: 15479250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Placement of Inoculum of Gaeumannomyces graminis var. tritici on Severity of Take-all in Winter Wheat.
    Kabbage M; Bockus WW
    Plant Dis; 2002 Mar; 86(3):298-303. PubMed ID: 30818611
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistence of DNA of Gaeumannomyces graminis var. tritici in soil as measured by a DNA-based assay.
    Herdina ; Neate S; Jabaji-Hare S; Ophel-Keller K
    FEMS Microbiol Ecol; 2004 Feb; 47(2):143-52. PubMed ID: 19712330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inoculum sources of the tan spot fungus Pyrenophora tritici-repentis in The Netherlands.
    Kastelein P; Köhl J; Gerlagh M; Goossen-van de Geijn HM
    Meded Rijksuniv Gent Fak Landbouwkd Toegep Biol Wet; 2002; 67(2):257-67. PubMed ID: 12701430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidemiological analysis of take-all decline in winter wheat.
    Bailey DJ; Paveley N; Spink J; Lucas P; Gilligan CA
    Phytopathology; 2009 Jul; 99(7):861-8. PubMed ID: 19522584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationships Between Verticillium dahliae Inoculum Density and Wilt Incidence, Severity, and Growth of Cauliflower.
    Xiao CL; Subbarao KV
    Phytopathology; 1998 Oct; 88(10):1108-15. PubMed ID: 18944824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.