BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 18944835)

  • 41. Reduction in Common Rust Severity Conferred by the Rp1D Gene in Sweet Corn Hybrids Infected by Mixtures of Rp1D-Virulent and Avirulent Puccinia sorghi.
    Pataky JK; Campaña MA
    Plant Dis; 2007 Nov; 91(11):1484-1488. PubMed ID: 30780738
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Virulence Characterization and Identification of Maize Lines Resistant to Puccinia sorghi Schwein. Present in the Argentine Corn Belt Region.
    Darino MA; Rochi L; Lia VV; Kreff ED; Pergolesi MF; Ingala LR; Dieguez MJ; Sacco F
    Plant Dis; 2016 Apr; 100(4):770-776. PubMed ID: 30688610
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Bias and Sampling Error of the Estimated Proportion of Genotypic Variance Explained by Quantitative Trait Loci Determined From Experimental Data in Maize Using Cross Validation and Validation With Independent Samples.
    Utz HF; Melchinger AE; Schön CC
    Genetics; 2000 Apr; 154(3):1839-1849. PubMed ID: 10866652
    [TBL] [Abstract][Full Text] [Related]  

  • 44. RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool.
    Igartua E; Casas AM; Ciudad F; Montoya JL; Romagosa I
    Heredity (Edinb); 1999 Nov; 83 (Pt 5)():551-9. PubMed ID: 10620027
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic multiline population approach to resistance gene management.
    Wilson JP; Gates RN; Panwar MS
    Phytopathology; 2001 Mar; 91(3):255-60. PubMed ID: 18943344
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Heritability and Components of Resistance to Cercospora zeae-maydis Derived from Maize Inbred VO613Y.
    Gordon SG; Lipps PE; Pratt RC
    Phytopathology; 2006 Jun; 96(6):593-8. PubMed ID: 18943176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Corrigendum to "Characterization and comparative analysis of the genome of Puccinia sorghi Schwein, the causal agent of maize common rust" [Fungal Genet. Biol. 112 (2018) 31-39].
    Rochi L; Diéguez MJ; Burguener G; Darino MA; Pergolesi MF; Ingala LR; Cuyeu AR; Turjanski A; Kreff ED; Sacco F
    Fungal Genet Biol; 2019 Jul; 128():74. PubMed ID: 31023637
    [No Abstract]   [Full Text] [Related]  

  • 48. EXCEPTIONAL GENETIC DIVERGENCE OF NORTHERN FLINT CORN.
    Doebley JF; Goodman OM; Stuber CW
    Am J Bot; 1986 Jan; 73(1):64-69. PubMed ID: 30139112
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Correction: study and characterization of an ancient European flint white maize rich in anthocyanins: Millo Corvo from Galicia.
    Lago C; Landoni M; Cassani E; Cantaluppi E; Doria E; Nielsen E; Giorgi A; Pilu R
    PLoS One; 2015; 10(6):e0130110. PubMed ID: 26039086
    [No Abstract]   [Full Text] [Related]  

  • 50. Flint Water Crisis: What Happened and Why?
    Masten SJ; Davies SH; Mcelmurry SP
    J Am Water Works Assoc; 2016 Dec; 108(12):22-34. PubMed ID: 28316336
    [No Abstract]   [Full Text] [Related]  

  • 51. Dissection of Common Rust Resistance in Tropical Maize Multiparent Population through GWAS and Linkage Studies.
    Li L; Jiang F; Bi Y; Yin X; Zhang Y; Li S; Zhang X; Liu M; Li J; Shaw RK; Ijaz B; Fan X
    Plants (Basel); 2024 May; 13(10):. PubMed ID: 38794480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Genetic Dissection of Quantitative Resistance to Common Rust (
    Ren J; Li Z; Wu P; Zhang A; Liu Y; Hu G; Cao S; Qu J; Dhliwayo T; Zheng H; Olsen M; Prasanna BM; San Vicente F; Zhang X
    Front Plant Sci; 2021; 12():692205. PubMed ID: 34276741
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and diversity of tropical maize inbred lines with resistance to common rust (
    Sserumaga JP; Makumbi D; Assanga SO; Mageto EK; Njeri SG; Jumbo BM; Bruce AY
    Crop Sci; 2020; 60(6):2971-2989. PubMed ID: 33536660
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome-wide association studies in tropical maize germplasm reveal novel and known genomic regions for resistance to Northern corn leaf blight.
    Rashid Z; Sofi M; Harlapur SI; Kachapur RM; Dar ZA; Singh PK; Zaidi PH; Vivek BS; Nair SK
    Sci Rep; 2020 Dec; 10(1):21949. PubMed ID: 33319847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Combination of Linkage Mapping, GWAS, and GP to Dissect the Genetic Basis of Common Rust Resistance in Tropical Maize Germplasm.
    Kibe M; Nyaga C; Nair SK; Beyene Y; Das B; M SL; Bright JM; Makumbi D; Kinyua J; Olsen MS; Prasanna BM; Gowda M
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899999
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combined linkage and association mapping reveal QTL for host plant resistance to common rust (Puccinia sorghi) in tropical maize.
    Zheng H; Chen J; Mu C; Makumbi D; Xu Y; Mahuku G
    BMC Plant Biol; 2018 Nov; 18(1):310. PubMed ID: 30497411
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Two distinct classes of QTL determine rust resistance in sorghum.
    Wang X; Mace E; Hunt C; Cruickshank A; Henzell R; Parkes H; Jordan D
    BMC Plant Biol; 2014 Dec; 14():366. PubMed ID: 25551674
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Selection mapping of loci for quantitative disease resistance in a diverse maize population.
    Wisser RJ; Murray SC; Kolkman JM; Ceballos H; Nelson RJ
    Genetics; 2008 Sep; 180(1):583-99. PubMed ID: 18723892
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification and validation of QTLs conferring resistance to sorghum downy mildew (Peronosclerospora sorghi) and Rajasthan downy mildew (P. heteropogoni) in maize.
    Nair SK; Prasanna BM; Garg A; Rathore RS; Setty TA; Singh NN
    Theor Appl Genet; 2005 May; 110(8):1384-92. PubMed ID: 15841363
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.