These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 18944908)

  • 1. Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in Maize Stalk Residue.
    Cotten TK; Munkvold GP
    Phytopathology; 1998 Jun; 88(6):550-5. PubMed ID: 18944908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fusarium temperatum as a New Species Causing Ear Rot on Maize in Poland.
    Czembor E; Stępień Ł; Waśkiewicz A
    Plant Dis; 2014 Jul; 98(7):1001. PubMed ID: 30708873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Importance of Different Pathways for Maize Kernel Infection by Fusarium moniliforme.
    Munkvold GP; McGee DC; Carlton WM
    Phytopathology; 1997 Feb; 87(2):209-17. PubMed ID: 18945144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium moniliforme and F. proliferatum Isolated from Crown and Root Rot of Asparagus and Their Association with Asparagus Decline in Argentina.
    Lori G; Wolcan S; Mónaco C
    Plant Dis; 1998 Dec; 82(12):1405. PubMed ID: 30845491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water and temperature relations and microconidial germination of Fusarium moniliforme and Fusarium proliferatum from maize.
    Marín S; Sanchis V; Teixido A; Saenz R; Ramos AJ; Vinas I; Magan N
    Can J Microbiol; 1996 Oct; 42(10):1045-50. PubMed ID: 8890481
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of Fusarium graminearum and F. moniliforme in Maize Ears: Disease Progress, Fungal Biomass, and Mycotoxin Accumulation.
    Reid LM; Nicol RW; Ouellet T; Savard M; Miller JD; Young JC; Stewart DW; Schaafsma AW
    Phytopathology; 1999 Nov; 89(11):1028-37. PubMed ID: 18944658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mango malformation disease and the associated fusarium species.
    Marasas WF; Ploetz RC; Wingfield MJ; Wingfield BD; Steenkamp ET
    Phytopathology; 2006 Jun; 96(6):667-72. PubMed ID: 18943188
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interspecific Competition for Colonization of Maize Plants Between
    Gaige AR; Todd T; Stack JP
    Plant Dis; 2020 Aug; 104(8):2102-2110. PubMed ID: 32515690
    [No Abstract]   [Full Text] [Related]  

  • 9. Monitoring fusarium crown rot populations in spring wheat residues using quantitative real-time polymerase chain reaction.
    Hogg AC; Johnston RH; Johnston JA; Klouser L; Kephart KD; Dyer AT
    Phytopathology; 2010 Jan; 100(1):49-57. PubMed ID: 19968549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Inoculation Method on Systemic Fusarium moniliforme Infection of Maize Plants Grown from Infected Seeds.
    Munkvold GP; Carlton WM
    Plant Dis; 1997 Feb; 81(2):211-216. PubMed ID: 30870899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Maize ear rot and moniliformin contamination by cryptic species of Fusarium subglutinans.
    Desjardins AE; Maragos CM; Proctor RH
    J Agric Food Chem; 2006 Sep; 54(19):7383-90. PubMed ID: 16968109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduced fusarium ear rot and symptomless infection in kernels of maize genetically engineered for European corn borer resistance.
    Munkvold GP; Hellmich RL; Showers WB
    Phytopathology; 1997 Oct; 87(10):1071-7. PubMed ID: 18945043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of an inoculation technique for rapidly evaluating maize inbred lines for resistance to stalk rot caused by
    Jiang W; Han W; Wang R; Li Y; Hu G; Yang J; Jiang D; Han W; Wang M; Li G
    Plant Dis; 2020 Dec; ():. PubMed ID: 33373281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominance of Group 2 and fusaproliferin production by Fusarium subglutinans from Iowa maize.
    Munkvold GP; Logrieco A; Moretti A; Ferracane R; Ritieni A
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):388-94. PubMed ID: 19680913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence, Pathogenicity, and Mycotoxin Production of
    Pfordt A; Schiwek S; Rathgeb A; Rodemann C; Bollmann N; Buchholz M; Karlovsky P; von Tiedemann A
    Pathogens; 2020 Oct; 9(11):. PubMed ID: 33105838
    [No Abstract]   [Full Text] [Related]  

  • 16. Water activity, temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize.
    Marín S; Sanchis V; Magan N
    Can J Microbiol; 1995 Dec; 41(12):1063-70. PubMed ID: 8542550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fusarium crookwellense-produced zearalenone in maize stubble in the field.
    López TA; Escande A; Chayer R; Dosanto M; Gerpe O; Salomón ML
    N Z Vet J; 1997 Dec; 45(6):251-3. PubMed ID: 16032000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The FUS3/KSS1-type MAP kinase gene FPK1 is involved in hyphal growth, conidiation and plant infection of Fusarium proliferatum.
    Zhao PB; Ren AZ; Li DC
    J Mol Microbiol Biotechnol; 2011; 21(3-4):110-9. PubMed ID: 22286038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans.
    Scauflaire J; Gourgue M; Munaut F
    Mycologia; 2011; 103(3):586-97. PubMed ID: 21186324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maize (Zea mays L.) genetic factors for preventing fumonisin contamination.
    Butrón A; Santiago R; Mansilla P; Pintos-Varela C; Ordas A; Malvar RA
    J Agric Food Chem; 2006 Aug; 54(16):6113-7. PubMed ID: 16881725
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.