These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 18944997)
21. Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection. Krokene P; Nagy NE; Solheim H Tree Physiol; 2008 Jan; 28(1):29-35. PubMed ID: 17938111 [TBL] [Abstract][Full Text] [Related]
22. Methyl jasmonate treatment of mature Norway spruce (Picea abies) trees increases the accumulation of terpenoid resin components and protects against infection by Ceratocystis polonica, a bark beetle-associated fungus. Zeneli G; Krokene P; Christiansen E; Krekling T; Gershenzon J Tree Physiol; 2006 Aug; 26(8):977-88. PubMed ID: 16651247 [TBL] [Abstract][Full Text] [Related]
23. Population dynamics in changing environments: the case of an eruptive forest pest species. Kausrud K; Okland B; Skarpaas O; Grégoire JC; Erbilgin N; Stenseth NC Biol Rev Camb Philos Soc; 2012 Feb; 87(1):34-51. PubMed ID: 21557798 [TBL] [Abstract][Full Text] [Related]
26. Drought increases Norway spruce susceptibility to the Eurasian spruce bark beetle and its associated fungi. Netherer S; Lehmanski L; Bachlehner A; Rosner S; Savi T; Schmidt A; Huang J; Paiva MR; Mateus E; Hartmann H; Gershenzon J New Phytol; 2024 May; 242(3):1000-1017. PubMed ID: 38433329 [TBL] [Abstract][Full Text] [Related]
27. Exogenous application of methyl jasmonate elicits defenses in Norway spruce (Picea abies) and reduces host colonization by the bark beetle Ips typographus. Erbilgin N; Krokene P; Christiansen E; Zeneli G; Gershenzon J Oecologia; 2006 Jun; 148(3):426-36. PubMed ID: 16514534 [TBL] [Abstract][Full Text] [Related]
28. Phenotypic and DNA sequence data comparisons reveal three discrete species in the Ceratocystis polonica species complex. Marin M; Preisig O; Wingfield BD; Kirisits T; Yamaoka Y; Wingfield MJ Mycol Res; 2005 Oct; 109(Pt 10):1137-48. PubMed ID: 16279408 [TBL] [Abstract][Full Text] [Related]
29. Inducible anatomical defense responses in Norway spruce stems and their possible role in induced resistance. Krokene P; Solheim H; Krekling T; Christiansen E Tree Physiol; 2003 Feb; 23(3):191-7. PubMed ID: 12566269 [TBL] [Abstract][Full Text] [Related]
30. Ophiostomatoid fungi synergize attraction of the Eurasian spruce bark beetle, Jirošová A; Modlinger R; Hradecký J; Ramakrishnan R; Beránková K; Kandasamy D Front Microbiol; 2022; 13():980251. PubMed ID: 36204608 [TBL] [Abstract][Full Text] [Related]
31. Interspecific variation in spruce constitutive and induced defenses in response to a bark beetle-fungal symbiont provides insight into traits associated with resistance. Ott DS; Davis TS; Mercado JE Tree Physiol; 2021 Jul; 41(7):1109-1121. PubMed ID: 33450761 [TBL] [Abstract][Full Text] [Related]
32. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain. Romón P; Zhou X; Iturrondobeitia JC; Wingfield MJ; Goldarazena A Can J Microbiol; 2007 Jun; 53(6):756-67. PubMed ID: 17668036 [TBL] [Abstract][Full Text] [Related]
33. A common fungal associate of the spruce bark beetle metabolizes the stilbene defenses of Norway spruce. Hammerbacher A; Schmidt A; Wadke N; Wright LP; Schneider B; Bohlmann J; Brand WA; Fenning TM; Gershenzon J; Paetz C Plant Physiol; 2013 Jul; 162(3):1324-36. PubMed ID: 23729780 [TBL] [Abstract][Full Text] [Related]
35. Interactions among Norway spruce, the bark beetle Netherer S; Kandasamy D; Jirosová A; Kalinová B; Schebeck M; Schlyter F J Pest Sci (2004); 2021; 94(3):591-614. PubMed ID: 34720785 [TBL] [Abstract][Full Text] [Related]
36. Semiochemicals produced by fungal bark beetle symbiont Endoconidiophora rufipennis and the discovery of an anti-attractant for Ips typographus. Lindmark M; Ganji S; Wallin EA; Schlyter F; Unelius CR PLoS One; 2023; 18(4):e0283906. PubMed ID: 37023040 [TBL] [Abstract][Full Text] [Related]
37. Filamentous fungal associates of the alder bark beetle, Alniphagus aspericollis, including an undescribed species of Neonectria. Lee GYS; Wertman DL; Carroll AL; Hamelin RC PLoS One; 2023; 18(5):e0284393. PubMed ID: 37155652 [TBL] [Abstract][Full Text] [Related]
38. Inducibility of chemical defenses in Norway spruce bark is correlated with unsuccessful mass attacks by the spruce bark beetle. Schiebe C; Hammerbacher A; Birgersson G; Witzell J; Brodelius PE; Gershenzon J; Hansson BS; Krokene P; Schlyter F Oecologia; 2012 Sep; 170(1):183-98. PubMed ID: 22422313 [TBL] [Abstract][Full Text] [Related]
39. Leptographium tereforme sp. nov. and other Ophiostomatales isolated from the root-feeding bark beetle Hylurgus ligniperda in California. Kim S; Harrington TC; Lee JC; Seybold SJ Mycologia; 2011; 103(1):152-63. PubMed ID: 20943533 [TBL] [Abstract][Full Text] [Related]
40. Addressing a century-old hypothesis - do pioneer beetles of Ips typographus use volatile cues to find suitable host trees? Lehmanski LMA; Kandasamy D; Andersson MN; Netherer S; Alves EG; Huang J; Hartmann H New Phytol; 2023 Jun; 238(5):1762-1770. PubMed ID: 36880374 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]