These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 18945111)

  • 1. Bacillus sp. L324-92 for Biological Control of Three Root Diseases of Wheat Grown with Reduced Tillage.
    Kim DS; Cook RJ; Weller DM
    Phytopathology; 1997 May; 87(5):551-8. PubMed ID: 18945111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Population Dynamics of Bacillus sp. L324-92R(12) and Pseudomonas fluorescens 2-79RN(10) in the Rhizosphere of Wheat.
    Kim DS; Weller DM; Cook RJ
    Phytopathology; 1997 May; 87(5):559-64. PubMed ID: 18945112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield Responses of Direct-Seeded Wheat to Rhizobacteria and Fungicide Seed Treatments.
    Cook RJ; Weller DM; El-Banna AY; Vakoch D; Zhang H
    Plant Dis; 2002 Jul; 86(7):780-784. PubMed ID: 30818577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of fungal root pathogens on the population dynamics of biocontrol strains of fluorescent pseudomonads in the wheat rhizosphere.
    Mazzola M; Cook RJ
    Appl Environ Microbiol; 1991 Aug; 57(8):2171-8. PubMed ID: 16348532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Root Diseases of Wheat and Barley During the Transition from Conventional Tillage to Direct Seeding.
    Schroeder KL; Paulitz TC
    Plant Dis; 2006 Sep; 90(9):1247-1253. PubMed ID: 30781109
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots.
    Weller DM; Landa BB; Mavrodi OV; Schroeder KL; De La Fuente L; Blouin Bankhead S; Allende Molar R; Bonsall RF; Mavrodi DV; Thomashow LS
    Plant Biol (Stuttg); 2007 Jan; 9(1):4-20. PubMed ID: 17058178
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zhang J; Mavrodi DV; Yang M; Thomashow LS; Mavrodi OV; Kelton J; Weller DM
    Phytopathology; 2020 May; 110(5):1010-1017. PubMed ID: 32065038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic Lipopeptide Surfactant Production by Pseudomonas fluorescens SS101 Is Not Required for Suppression of Complex Pythium spp. Populations.
    Mazzola M; Zhao X; Cohen MF; Raaijmakers JM
    Phytopathology; 2007 Oct; 97(10):1348-55. PubMed ID: 18943694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of glyphosate, crop volunteer and root pathogens on glyphosate-resistant wheat under controlled environmental conditions.
    Baley GJ; Campbell KG; Yenish J; Kidwell KK; Paulitz TC
    Pest Manag Sci; 2009 Mar; 65(3):288-99. PubMed ID: 19115241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of inoculum density and soil tillage on the development and severity of rhizoctonia root rot.
    Schroeder KL; Paulitz TC
    Phytopathology; 2008 Mar; 98(3):304-14. PubMed ID: 18944081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular Characterization, Morphological Characteristics, Virulence, and Geographic Distribution of Rhizoctonia spp. in Washington State.
    Jaaffar AK; Paulitz TC; Schroeder KL; Thomashow LS; Weller DM
    Phytopathology; 2016 May; 106(5):459-73. PubMed ID: 26780436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Suppression of Wheat Growth and Yield by Pratylenchus neglectus in the Pacific Northwest.
    Smiley RW; Whittaker RG; Gourlie JA; Easley SA
    Plant Dis; 2005 Sep; 89(9):958-968. PubMed ID: 30786629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel screening strategy reveals a potent Bacillus antagonist capable of mitigating wheat take-all disease caused by Gaeumannomyces graminis var. tritici.
    Zhang DD; Guo XJ; Wang YJ; Gao TG; Zhu BC
    Lett Appl Microbiol; 2017 Dec; 65(6):512-519. PubMed ID: 28977681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Agroecological factors correlated to soil DNA concentrations of Rhizoctonia in dryland wheat production zones of Washington state, USA.
    Okubara PA; Schroeder KL; Abatzoglou JT; Paulitz TC
    Phytopathology; 2014 Jul; 104(7):683-91. PubMed ID: 24915426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhizosphere community selection reveals bacteria associated with reduced root disease.
    Yin C; Casa Vargas JM; Schlatter DC; Hagerty CH; Hulbert SH; Paulitz TC
    Microbiome; 2021 Apr; 9(1):86. PubMed ID: 33836842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici.
    MaciĆ”-Vicente JG; Jansson HB; Mendgen K; Lopez-Llorca LV
    Can J Microbiol; 2008 Aug; 54(8):600-9. PubMed ID: 18772922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8.
    Mazzola M; Gu YH
    Phytopathology; 2002 Dec; 92(12):1300-7. PubMed ID: 18943884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity, virulence, and 2,4-diacetylphloroglucinol sensitivity of Gaeumannomyces graminis var. tritici isolates from Washington state.
    Kwak YS; Bakker PA; Glandorf DC; Rice JT; Paulitz TC; Weller DM
    Phytopathology; 2009 May; 99(5):472-9. PubMed ID: 19351242
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Reeves ER; Kerns JP; Cowger C; Shew BB
    Plant Dis; 2021 Apr; 105(4):986-996. PubMed ID: 33210972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.