These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 18945112)
21. [Boot colonization of wheat by lux-AB genes marked Pseudomonas fluorescens Xl6L2]. Wang P; Hu Z; Li F Wei Sheng Wu Xue Bao; 2000 Apr; 40(2):150-4. PubMed ID: 12548937 [TBL] [Abstract][Full Text] [Related]
22. Production of the antibiotic phenazine-1-carboxylic Acid by fluorescent pseudomonas species in the rhizosphere of wheat. Thomashow LS; Weller DM; Bonsall RF; Pierson LS Appl Environ Microbiol; 1990 Apr; 56(4):908-12. PubMed ID: 16348176 [TBL] [Abstract][Full Text] [Related]
23. Root cap influences root colonisation by Pseudomonas fluorescens SBW25 on maize. Humphris SN; Bengough AG; Griffiths BS; Kilham K; Rodger S; Stubbs V; Valentine TA; Young IM FEMS Microbiol Ecol; 2005 Sep; 54(1):123-30. PubMed ID: 16329978 [TBL] [Abstract][Full Text] [Related]
24. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Gurusiddaiah S; Weller DM; Sarkar A; Cook RJ Antimicrob Agents Chemother; 1986 Mar; 29(3):488-95. PubMed ID: 3087284 [TBL] [Abstract][Full Text] [Related]
25. Identification of Pythium carolinianum causing 'root rot' of cotton in Egypt and its possible biological control by Pseudomonas fluorescens. Abdelzaher HM; Elnaghy MA Mycopathologia; 1998; 142(3):143-51. PubMed ID: 16284850 [TBL] [Abstract][Full Text] [Related]
26. Biological Control of Pathogens Causing Root Rot Complex in Field Pea Using Clonostachys rosea Strain ACM941. Xue AG Phytopathology; 2003 Mar; 93(3):329-35. PubMed ID: 18944343 [TBL] [Abstract][Full Text] [Related]
27. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. Bergsma-Vlami M; Prins ME; Raaijmakers JM FEMS Microbiol Ecol; 2005 Mar; 52(1):59-69. PubMed ID: 16329893 [TBL] [Abstract][Full Text] [Related]
28. Identification and characterization of rhizosphere-competent bacteria of wheat. Juhnke ME; Mathre DE; Sands DC Appl Environ Microbiol; 1987 Dec; 53(12):2793-9. PubMed ID: 16347496 [TBL] [Abstract][Full Text] [Related]
29. Pythium invasion of plant-based life support systems: biological control and sources. Jenkins DG; Cook KL; Garland JL; Board KF Life Support Biosph Sci; 2000; 7(2):209-18. PubMed ID: 11543559 [TBL] [Abstract][Full Text] [Related]
30. Spatial Patterns of Rhizoplane Populations of Pseudomonas fluorescens. Dandurand LM; Schotzko DJ; Knudsen GR Appl Environ Microbiol; 1997 Aug; 63(8):3211-7. PubMed ID: 16535675 [TBL] [Abstract][Full Text] [Related]
31. Modeling of take-all epidemics to evaluate the efficacy of a new seed-treatment fungicide on wheat. Schoeny A; Lucas P Phytopathology; 1999 Oct; 89(10):954-61. PubMed ID: 18944741 [TBL] [Abstract][Full Text] [Related]
32. Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tritici. Thomashow LS; Weller DM J Bacteriol; 1988 Aug; 170(8):3499-508. PubMed ID: 2841289 [TBL] [Abstract][Full Text] [Related]
33. Minimal changes in rhizobacterial population structure following root colonization by wild type and transgenic biocontrol strains. Bankhead SB; Landa BB; Lutton E; Weller DM; Gardener BB FEMS Microbiol Ecol; 2004 Aug; 49(2):307-18. PubMed ID: 19712423 [TBL] [Abstract][Full Text] [Related]
34. Wheat rhizosphere colonization by Bacillus amyloliquefaciens W10 and Pseudomonas protegens FD6 suppress soil and in planta abundance of the sharp eyespot pathogen Rhizoctonia cerealis. Zhang Q; Liu Y; Harvey PR; Stummer BE; Yang J; Ji Z J Appl Microbiol; 2023 May; 134(5):. PubMed ID: 37188640 [TBL] [Abstract][Full Text] [Related]
35. Effect of carbon and nitrogen sources on growth and biological efficacy of Pseudomonas fluorescens and Bacillus subtilis against Rhizoctonia solani, the causal agent of bean damping-off. Peighamy-Ashnaei S; Sharifi-Tehrani A; Ahmadzadeh M; Behboudi K Commun Agric Appl Biol Sci; 2007; 72(4):951-6. PubMed ID: 18396833 [TBL] [Abstract][Full Text] [Related]
36. Impact of wheat cultivation on microbial communities from replant soils and apple growth in greenhouse trials. Mazzola M; Gu YH Phytopathology; 2000 Feb; 90(2):114-9. PubMed ID: 18944598 [TBL] [Abstract][Full Text] [Related]
37. Comparative Metatranscriptomics of Wheat Rhizosphere Microbiomes in Disease Suppressive and Non-suppressive Soils for Hayden HL; Savin KW; Wadeson J; Gupta VVSR; Mele PM Front Microbiol; 2018; 9():859. PubMed ID: 29780371 [TBL] [Abstract][Full Text] [Related]
38. Wheat Genotype-Specific Induction of Soil Microbial Communities Suppressive to Disease Incited by Rhizoctonia solani Anastomosis Group (AG)-5 and AG-8. Mazzola M; Gu YH Phytopathology; 2002 Dec; 92(12):1300-7. PubMed ID: 18943884 [TBL] [Abstract][Full Text] [Related]
39. Antagonistic Activity of Chilean Strains of Castro Tapia MP; Madariaga Burrows RP; Ruiz SepĂșlveda B; Vargas Concha M; Vera Palma C; Moya-Elizondo EA Front Plant Sci; 2020; 11():951. PubMed ID: 32670339 [TBL] [Abstract][Full Text] [Related]
40. Effect of Placement of Inoculum of Gaeumannomyces graminis var. tritici on Severity of Take-all in Winter Wheat. Kabbage M; Bockus WW Plant Dis; 2002 Mar; 86(3):298-303. PubMed ID: 30818611 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]