These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 18945142)

  • 1. Characterization of the Suppressiveness of Hairy Vetch-Amended Soils to Thielaviopsis basicola.
    Candole BL; Rothrock CS
    Phytopathology; 1997 Feb; 87(2):197-202. PubMed ID: 18945142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Temperature on and Histopathology of the Interaction Between Meloidogyne incognita and Thielaviopsis basicola on Cotton.
    Walker NR; Kirkpatrick TL; Rothrock CS
    Phytopathology; 1999 Aug; 89(8):613-7. PubMed ID: 18944671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential Sensitivity of Phytophthora parasitica var. nicotianae and Thielaviopsis basicola to Monomeric Aluminum Species.
    Fichtner EJ; Hesterberg DL; Smyth TJ; Shew HD
    Phytopathology; 2006 Mar; 96(3):212-20. PubMed ID: 18944434
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of Soil Receptivity to Thielaviopsis basicola, Aphanomyces euteiches, and Fusarium solani f. sp. pisi Causing Root Rot in Pea.
    Oyarzun PJ; Dijst G; Zoon FC; Maas PW
    Phytopathology; 1997 May; 87(5):534-41. PubMed ID: 18945109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of Soil Suppressiveness Against Rhizoctonia solani by Incorporation of Dried Plant Residues into Soil.
    Kasuya M; Olivier AR; Ota Y; Tojo M; Honjo H; Fukui R
    Phytopathology; 2006 Dec; 96(12):1372-9. PubMed ID: 18943670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil Texture Influence on Meloidogyne incognita and Thielaviopsis basicola and Their Interaction on Cotton.
    Jaraba J; Rothrock CS; Kirkpatrick TL; Brye KR
    Plant Dis; 2014 Mar; 98(3):336-343. PubMed ID: 30708433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola.
    Coumans JV; Moens PD; Poljak A; Al-Jaaidi S; Pereg L; Raftery MJ
    Proteomics; 2010 Apr; 10(8):1573-91. PubMed ID: 20186748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of Fusarium Wilt of Watermelon by Soil Amendment with Hairy Vetch.
    Zhou XG; Everts KL
    Plant Dis; 2004 Dec; 88(12):1357-1365. PubMed ID: 30795198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of synthetic and organic soil fertility amendments on southern blight, soil microbial communities, and yield of processing tomatoes.
    Bulluck LR; Ristaino JB
    Phytopathology; 2002 Feb; 92(2):181-9. PubMed ID: 18943092
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reassessment of the Role of Saprophytic Activity in the Ecology of Thielaviopsis basicola.
    Hood ME; Shew HD
    Phytopathology; 1997 Dec; 87(12):1214-9. PubMed ID: 18945020
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of Thielaviopsis basicola in soil with real-time quantitative PCR assays.
    Huang J; Kang Z
    Microbiol Res; 2010 Jul; 165(5):411-7. PubMed ID: 19837572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prevalence of fluorescent pseudomonads producing antifungal phloroglucinols and/or hydrogen cyanide in soils naturally suppressive or conducive to tobacco black root rot.
    Ramette A; Moënne-Loccoz Y; Défago G
    FEMS Microbiol Ecol; 2003 May; 44(1):35-43. PubMed ID: 19719649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic diversity and biocontrol potential of fluorescent pseudomonads producing phloroglucinols and hydrogen cyanide from Swiss soils naturally suppressive or conducive to Thielaviopsis basicola-mediated black root rot of tobacco.
    Ramette A; Moënne-Loccoz Y; Défago G
    FEMS Microbiol Ecol; 2006 Mar; 55(3):369-81. PubMed ID: 16466376
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of Seed Treatment Chemicals for Black Root Rot, Caused by Thielaviopsis basicola, on Cotton.
    Toksoz H; Rothrock CS; Kirkpatrick TL
    Plant Dis; 2009 Apr; 93(4):354-362. PubMed ID: 30764216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Daily changes of infections by Pythium ultimum after a nutrient impulse in organic versus conventional soils.
    He M; Ma W; Tian G; Blok W; Khodzaeva A; Zelenev VV; Semenov AM; van Bruggen AH
    Phytopathology; 2010 Jun; 100(6):593-600. PubMed ID: 20465415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liquid Swine Manure Can Kill Verticillium dahliae Microsclerotia in Soil by Volatile Fatty Acid, Nitrous Acid, and Ammonia Toxicity.
    Conn KL; Tenuta M; Lazarovits G
    Phytopathology; 2005 Jan; 95(1):28-35. PubMed ID: 18943833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil Suppressiveness Against Pythium ultimum and Rhizoctonia solani in Two Land Management Systems and Eleven Soil Health Treatments.
    Kurm V; Visser J; Schilder M; Nijhuis E; Postma J; Korthals G
    Microb Ecol; 2023 Oct; 86(3):1709-1724. PubMed ID: 37000231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer of Biological Soil Suppressiveness Against Heterodera schachtii.
    Westphal A; Becker JO
    Phytopathology; 2000 Apr; 90(4):401-6. PubMed ID: 18944591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil suppressiveness to Rhizoctonia solani and microbial diversity.
    Bakker Y; Van Loon FM; Schneider JH
    Commun Agric Appl Biol Sci; 2005; 70(3):29-33. PubMed ID: 16637155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of mixed and single crops on disease suppressiveness of soils.
    Hiddink GA; Termorshuizen AJ; Raaijmakers JM; van Bruggen AH
    Phytopathology; 2005 Nov; 95(11):1325-32. PubMed ID: 18943364
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.