BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 18945478)

  • 1. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques.
    Papassiopi N; Kontoyianni A; Vaxevanidou K; Xenidis A
    Sci Total Environ; 2009 Jan; 407(2):925-36. PubMed ID: 18945478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry.
    Long X; Miró M; Hansen EH
    Analyst; 2006 Jan; 131(1):132-40. PubMed ID: 16365674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag.
    Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y
    J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extractability of Cr(VI) from contaminated soil in synthetic sweat.
    Wainman T; Hazen RE; Lioy PJ
    J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of hexavalent chromium extraction method EPA method 3060A for soils using XANES spectroscopy.
    Malherbe J; Isaure MP; Séby F; Watson RP; Rodriguez-Gonzalez P; Stutzman PE; Davis CW; Maurizio C; Unceta N; Sieber JR; Long SE; Donard OF
    Environ Sci Technol; 2011 Dec; 45(24):10492-500. PubMed ID: 22050765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of heavy metals and arsenic from contaminated soils using bioremediation and chelant extraction techniques.
    Vaxevanidou K; Papassiopi N; Paspaliaris I
    Chemosphere; 2008 Feb; 70(8):1329-37. PubMed ID: 18037468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of sequential extraction procedures for soluble and insoluble hexavalent chromium compounds in workplace air samples.
    Ashley K; Applegate GT; Marcy AD; Drake PL; Pierce PA; Carabin N; Demange M
    J Environ Monit; 2009 Feb; 11(2):318-25. PubMed ID: 19212588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment.
    Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG
    Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of zerovalent iron for stabilization of chromium, copper, and arsenic in soil.
    Kumpiene J; Ore S; Renella G; Mench M; Lagerkvist A; Maurice C
    Environ Pollut; 2006 Nov; 144(1):62-9. PubMed ID: 16517035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation of Cr(VI) in contaminated soils.
    Krishna KR; Philip L
    J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of lead bioavailability in smelter-contaminated soils by single and sequential extraction procedure.
    Chen S; Sun L; Chao L; Zhou Q; Sun T
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):43-7. PubMed ID: 18854907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1.
    Polti MA; García RO; Amoroso MJ; Abate CM
    J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Environmental monitoring of chromium in air, soil, and water.
    Vitale RJ; Mussoline GR; Rinehimer KA
    Regul Toxicol Pharmacol; 1997 Aug; 26(1 Pt 2):S80-5. PubMed ID: 9380841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils.
    Figueiredo E; Soares ME; Baptista P; Castro M; Bastos ML
    J Agric Food Chem; 2007 Aug; 55(17):7192-8. PubMed ID: 17661487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of a European standard for the determination of hexavalent chromium in solid material.
    Tirez K; Scharf H; Calzolari D; Cleven R; Kisser M; Lück D
    J Environ Monit; 2007 Jul; 9(7):749-59. PubMed ID: 17607396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Leaching and reduction of chromium in soil as affected by soil organic content and plants.
    Banks MK; Schwab AP; Henderson C
    Chemosphere; 2006 Jan; 62(2):255-64. PubMed ID: 16000212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.