These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 18945624)
1. Betulinic acid binding to human serum albumin: a study of protein conformation and binding affinity. Subramanyam R; Gollapudi A; Bonigala P; Chinnaboina M; Amooru DG J Photochem Photobiol B; 2009 Jan; 94(1):8-12. PubMed ID: 18945624 [TBL] [Abstract][Full Text] [Related]
2. Novel binding studies of human serum albumin with trans-feruloyl maslinic acid. Subramanyam R; Goud M; Sudhamalla B; Reddeem E; Gollapudi A; Nellaepalli S; Yadavalli V; Chinnaboina M; Amooru DG J Photochem Photobiol B; 2009 May; 95(2):81-8. PubMed ID: 19230701 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation studies of betulinic acid with human serum albumin. Malleda C; Ahalawat N; Gokara M; Subramanyam R J Mol Model; 2012 Jun; 18(6):2589-97. PubMed ID: 22076062 [TBL] [Abstract][Full Text] [Related]
4. Factors influencing the fabrication of albumin-bound drug nanoparticles (ABDns): part I. Albumin-bound betulinic acid nanoparticles (ABBns). Srivari Y; Chatterjee P J Microencapsul; 2016 Dec; 33(8):689-701. PubMed ID: 27707051 [TBL] [Abstract][Full Text] [Related]
5. Molecular interaction studies of trimethoxy flavone with human serum albumin. Gokara M; Sudhamalla B; Amooru DG; Subramanyam R PLoS One; 2010 Jan; 5(1):e8834. PubMed ID: 20098677 [TBL] [Abstract][Full Text] [Related]
6. Unraveling the binding mechanism of asiatic acid with human serum albumin and its biological implications. Gokara M; Malavath T; Kalangi SK; Reddana P; Subramanyam R J Biomol Struct Dyn; 2014; 32(8):1290-302. PubMed ID: 23844909 [TBL] [Abstract][Full Text] [Related]
7. Interaction of a tyrosine kinase inhibitor, vandetanib with human serum albumin as studied by fluorescence quenching and molecular docking. Kabir MZ; Feroz SR; Mukarram AK; Alias Z; Mohamad SB; Tayyab S J Biomol Struct Dyn; 2016 Aug; 34(8):1693-704. PubMed ID: 26331959 [TBL] [Abstract][Full Text] [Related]
8. New Insights into the Inhibition Mechanism of Betulinic Acid on α-Glucosidase. Ding H; Wu X; Pan J; Hu X; Gong D; Zhang G J Agric Food Chem; 2018 Jul; 66(27):7065-7075. PubMed ID: 29902001 [TBL] [Abstract][Full Text] [Related]
9. Interaction studies of coumaroyltyramine with human serum albumin and its biological importance. Neelam S; Gokara M; Sudhamalla B; Amooru DG; Subramanyam R J Phys Chem B; 2010 Mar; 114(8):3005-12. PubMed ID: 20136105 [TBL] [Abstract][Full Text] [Related]
10. Protein stability, conformational change and binding mechanism of human serum albumin upon binding of embelin and its role in disease control. Yeggoni DP; Rachamallu A; Subramanyam R J Photochem Photobiol B; 2016 Jul; 160():248-59. PubMed ID: 27130964 [TBL] [Abstract][Full Text] [Related]
11. Probing the binding interaction of human serum albumin with three bioactive constituents of Eriobotrta japonica leaves: Spectroscopic and molecular modeling approaches. Wang Q; Sun Q; Ma X; Rao Z; Li H J Photochem Photobiol B; 2015 Jul; 148():268-276. PubMed ID: 25985147 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxicity and comparative binding mechanism of piperine with human serum albumin and α-1-acid glycoprotein. Yeggoni DP; Rachamallu A; Kallubai M; Subramanyam R J Biomol Struct Dyn; 2015; 33(6):1336-51. PubMed ID: 25054206 [TBL] [Abstract][Full Text] [Related]
13. Investigation of binding mechanism of novel 8-substituted coumarin derivatives with human serum albumin and α-1-glycoprotein. Yeggoni DP; Manidhar DM; Suresh Reddy C; Subramanyam R J Biomol Struct Dyn; 2016 Sep; 34(9):2023-36. PubMed ID: 26440860 [TBL] [Abstract][Full Text] [Related]
14. Binding studies of phloridzin with human serum albumin and its effect on the conformation of protein. Yue Y; Liu J; Fan J; Yao X J Pharm Biomed Anal; 2011 Sep; 56(2):336-42. PubMed ID: 21665402 [TBL] [Abstract][Full Text] [Related]
15. Exploring the interaction between picoplatin and human serum albumin: The effects on protein structure and activity. Wang Y; Wu P; Zhou X; Zhang H; Qiu L; Cao J J Photochem Photobiol B; 2016 Sep; 162():611-618. PubMed ID: 27484966 [TBL] [Abstract][Full Text] [Related]
16. Comparing the interaction of cyclophosphamide monohydrate to human serum albumin as opposed to holo-transferrin by spectroscopic and molecular modeling methods: evidence for allocating the binding site. Tousi SH; Saberi MR; Chamani J Protein Pept Lett; 2010 Dec; 17(12):1524-35. PubMed ID: 20937032 [TBL] [Abstract][Full Text] [Related]
17. Computational investigations of physicochemical, pharmacokinetic, toxicological properties and molecular docking of betulinic acid, a constituent of Corypha taliera (Roxb.) with Phospholipase A2 (PLA2). Khan MF; Nahar N; Rashid RB; Chowdhury A; Rashid MA BMC Complement Altern Med; 2018 Feb; 18(1):48. PubMed ID: 29391000 [TBL] [Abstract][Full Text] [Related]
18. Molecular dynamics simulation and binding studies of beta-sitosterol with human serum albumin and its biological relevance. Sudhamalla B; Gokara M; Ahalawat N; Amooru DG; Subramanyam R J Phys Chem B; 2010 Jul; 114(27):9054-62. PubMed ID: 20565066 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the binding of metoprolol tartrate and guaifenesin drugs to human serum albumin and human hemoglobin proteins by fluorescence and circular dichroism spectroscopy. Duman O; Tunç S; Kancı Bozoğlan B J Fluoresc; 2013 Jul; 23(4):659-69. PubMed ID: 23471625 [TBL] [Abstract][Full Text] [Related]
20. Interaction between phillygenin and human serum albumin based on spectroscopic and molecular docking. Song W; Ao MZ; Shi Y; Yuan LF; Yuan XX; Yu LJ Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jan; 85(1):120-6. PubMed ID: 22000638 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]