BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 18945905)

  • 1. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex.
    Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2008 Oct; 28(43):10972-82. PubMed ID: 18945905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective lesions of the dorsomedial striatum impair serial spatial reversal learning in rats.
    Castañé A; Theobald DE; Robbins TW
    Behav Brain Res; 2010 Jun; 210(1):74-83. PubMed ID: 20153781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex.
    Chudasama Y; Robbins TW
    J Neurosci; 2003 Sep; 23(25):8771-80. PubMed ID: 14507977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine, but not serotonin, regulates reversal learning in the marmoset caudate nucleus.
    Clarke HF; Hill GJ; Robbins TW; Roberts AC
    J Neurosci; 2011 Mar; 31(11):4290-7. PubMed ID: 21411670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential contributions of the primate ventrolateral prefrontal and orbitofrontal cortex to serial reversal learning.
    Rygula R; Walker SC; Clarke HF; Robbins TW; Roberts AC
    J Neurosci; 2010 Oct; 30(43):14552-9. PubMed ID: 20980613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the striatum in compulsive behavior in intact and orbitofrontal-cortex-lesioned rats: possible involvement of the serotonergic system.
    Schilman EA; Klavir O; Winter C; Sohr R; Joel D
    Neuropsychopharmacology; 2010 Mar; 35(4):1026-39. PubMed ID: 20072118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Touch-screen visual reversal learning is mediated by value encoding and signal propagation in the orbitofrontal cortex.
    Marquardt K; Sigdel R; Brigman JL
    Neurobiol Learn Mem; 2017 Mar; 139():179-188. PubMed ID: 28111339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic stimulation of corticostriatal circuits improves behavioral flexibility in mice with prenatal alcohol exposure.
    Licheri V; Chandrasekaran J; Kenton JA; Bird CW; Valenzuela CF; Brigman JL
    Neuropharmacology; 2024 Apr; 247():109860. PubMed ID: 38336243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perseveration in a spatial-discrimination serial reversal learning task is differentially affected by MAO-A and MAO-B inhibition and associated with reduced anxiety and peripheral serotonin levels.
    Zhukovsky P; Alsiö J; Jupp B; Xia J; Giuliano C; Jenner L; Griffiths J; Riley E; Ali S; Roberts AC; Robbins TW; Dalley JW
    Psychopharmacology (Berl); 2017 May; 234(9-10):1557-1571. PubMed ID: 28251298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective Role of the Putamen in Serial Reversal Learning in the Marmoset.
    Jackson SAW; Horst NK; Axelsson SFA; Horiguchi N; Cockcroft GJ; Robbins TW; Roberts AC
    Cereb Cortex; 2019 Jan; 29(1):447-460. PubMed ID: 30395188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the Perigenual Anterior Cingulate and Orbitofrontal Cortex in Contingency Learning in the Marmoset.
    Jackson SA; Horst NK; Pears A; Robbins TW; Roberts AC
    Cereb Cortex; 2016 Jul; 26(7):3273-84. PubMed ID: 27130662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of 5-HT2C receptors in touchscreen visual reversal learning in the rat: a cross-site study.
    Alsiö J; Nilsson SR; Gastambide F; Wang RA; Dam SA; Mar AC; Tricklebank M; Robbins TW
    Psychopharmacology (Berl); 2015 Nov; 232(21-22):4017-31. PubMed ID: 26007324
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human processing of behaviorally relevant and irrelevant absence of expected rewards: a high-resolution ERP study.
    Nahum L; Gabriel D; Schnider A
    PLoS One; 2011 Jan; 6(1):e16173. PubMed ID: 21298049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regional Striatal Cholinergic Involvement in Human Behavioral Flexibility.
    Bell T; Lindner M; Langdon A; Mullins PG; Christakou A
    J Neurosci; 2019 Jul; 39(29):5740-5749. PubMed ID: 31109959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic regulation of corticostriatal glutamatergic synaptic expression during reversal learning in male mice.
    Chandrasekaran J; Caldwell KK; Brigman JL
    Neurobiol Learn Mem; 2024 Feb; 208():107892. PubMed ID: 38242226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemogenetic Disconnection between the Orbitofrontal Cortex and the Rostromedial Caudate Nucleus Disrupts Motivational Control of Goal-Directed Action.
    Oyama K; Hori Y; Mimura K; Nagai Y; Eldridge MAG; Saunders RC; Miyakawa N; Hirabayashi T; Hori Y; Inoue KI; Suhara T; Takada M; Higuchi M; Richmond BJ; Minamimoto T
    J Neurosci; 2022 Aug; 42(32):6267-6275. PubMed ID: 35794012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning.
    Izquierdo A; Murray EA
    J Neurosci; 2007 Jan; 27(5):1054-62. PubMed ID: 17267559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behavior.
    Manning EE; Dombrovski AY; Torregrossa MM; Ahmari SE
    Neuropsychopharmacology; 2019 Jul; 44(8):1494-1504. PubMed ID: 30587851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning.
    Schoenbaum G; Chiba AA; Gallagher M
    J Neurosci; 1999 Mar; 19(5):1876-84. PubMed ID: 10024371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissociable Contributions of Basolateral Amygdala and Ventrolateral Orbitofrontal Cortex to Flexible Learning Under Uncertainty.
    Aguirre CG; Woo JH; Romero-Sosa JL; Rivera ZM; Tejada AN; Munier JJ; Perez J; Goldfarb M; Das K; Gomez M; Ye T; Pannu J; Evans K; O'Neill PR; Spigelman I; Soltani A; Izquierdo A
    J Neurosci; 2024 Jan; 44(2):. PubMed ID: 37968116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.