BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 18946040)

  • 21. Regulation of the SIAH2-HIF-1 Axis by Protein Kinases and Its Implication in Cancer Therapy.
    Xu D; Li C
    Front Cell Dev Biol; 2021; 9():646687. PubMed ID: 33842469
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Oxygen-dependent cleavage of the p75 neurotrophin receptor triggers stabilization of HIF-1α.
    Le Moan N; Houslay DM; Christian F; Houslay MD; Akassoglou K
    Mol Cell; 2011 Nov; 44(3):476-90. PubMed ID: 22055192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Siah proteins, HIF prolyl hydroxylases, and the physiological response to hypoxia.
    Simon MC
    Cell; 2004 Jun; 117(7):851-3. PubMed ID: 15210106
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Src activates HIF-1α not through direct phosphorylation of HIF-1α specific prolyl-4 hydroxylase 2 but through activation of the NADPH oxidase/Rac pathway.
    Lee HY; Lee T; Lee N; Yang EG; Lee C; Lee J; Moon EY; Ha J; Park H
    Carcinogenesis; 2011 May; 32(5):703-12. PubMed ID: 21335603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. USP13 enzyme regulates Siah2 ligase stability and activity via noncatalytic ubiquitin-binding domains.
    Scortegagna M; Subtil T; Qi J; Kim H; Zhao W; Gu W; Kluger H; Ronai ZA
    J Biol Chem; 2011 Aug; 286(31):27333-41. PubMed ID: 21659512
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polo-like kinase 3, hypoxic responses, and tumorigenesis.
    Xu D; Dai W; Li C
    Cell Cycle; 2017; 16(21):2032-2036. PubMed ID: 28857653
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Vascular normalization by loss of Siah2 results in increased chemotherapeutic efficacy.
    Wong CS; Sceneay J; House CM; Halse HM; Liu MC; George J; Hunnam TC; Parker BS; Haviv I; Ronai Z; Cullinane C; Bowtell DD; Möller A
    Cancer Res; 2012 Apr; 72(7):1694-704. PubMed ID: 22354750
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Increased expression of PHD3 represses the HIF-1 signaling pathway and contributes to poor neovascularization in pancreatic ductal adenocarcinoma.
    Tanaka T; Li TS; Urata Y; Goto S; Ono Y; Kawakatsu M; Matsushima H; Hirabaru M; Adachi T; Kitasato A; Takatsuki M; Kuroki T; Eguchi S
    J Gastroenterol; 2015 Sep; 50(9):975-83. PubMed ID: 25542265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) transcriptional activity by the HIF prolyl hydroxylase EGLN1.
    To KK; Huang LE
    J Biol Chem; 2005 Nov; 280(45):38102-7. PubMed ID: 16157596
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of prolyl hydroxylase inhibitors on adipogenesis and hypoxia inducible factor 1 alpha levels under normoxic conditions.
    Floyd ZE; Kilroy G; Wu X; Gimble JM
    J Cell Biochem; 2007 Aug; 101(6):1545-57. PubMed ID: 17370314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Loss of Siah2 does not impact angiogenic potential of murine endothelial cells.
    Wong CS; Chen A; Liu MC; Parker BS; Möller A
    Microvasc Res; 2015 Nov; 102():38-45. PubMed ID: 26275748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Siah2-HIF-FoxA2 axis in prostate cancer – new markers and therapeutic opportunities.
    Qi J; Pellecchia M; Ronai ZA
    Oncotarget; 2010 Sep; 1(5):379-85. PubMed ID: 21037926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of polynitrogen compounds on the activity of recombinant human HIF-1α prolyl hydroxylase 3 in E. coli.
    Geng Z; Zhu J; Cao J; Geng J; Song X; Zhang Z; Bian N; Wang Z
    J Inorg Biochem; 2011 Mar; 105(3):391-9. PubMed ID: 21421125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxygen sensing by the prolyl-4-hydroxylase PHD2 within the nuclear compartment and the influence of compartmentalisation on HIF-1 signalling.
    Pientka FK; Hu J; Schindler SG; Brix B; Thiel A; Jöhren O; Fandrey J; Berchner-Pfannschmidt U; Depping R
    J Cell Sci; 2012 Nov; 125(Pt 21):5168-76. PubMed ID: 22946054
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway.
    Yeh YH; Hsiao HF; Yeh YC; Chen TW; Li TK
    J Exp Clin Cancer Res; 2018 Mar; 37(1):70. PubMed ID: 29587825
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mutual regulation between Polo-like kinase 3 and SIAH2 E3 ubiquitin ligase defines a regulatory network that fine-tunes the cellular response to hypoxia and nickel.
    Li C; Park S; Zhang X; Dai W; Xu D
    J Biol Chem; 2017 Jul; 292(27):11431-11444. PubMed ID: 28515325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-density lipoproteins augment hypoxia-induced angiogenesis via regulation of post-translational modulation of hypoxia-inducible factor 1α.
    Tan JT; Prosser HC; Vanags LZ; Monger SA; Ng MK; Bursill CA
    FASEB J; 2014 Jan; 28(1):206-17. PubMed ID: 24022405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advanced glycated end-products affect HIF-transcriptional activity in renal cells.
    Bondeva T; Heinzig J; Ruhe C; Wolf G
    Mol Endocrinol; 2013 Nov; 27(11):1918-33. PubMed ID: 24030251
    [TBL] [Abstract][Full Text] [Related]  

  • 39. OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha.
    Baek JH; Mahon PC; Oh J; Kelly B; Krishnamachary B; Pearson M; Chan DA; Giaccia AJ; Semenza GL
    Mol Cell; 2005 Feb; 17(4):503-12. PubMed ID: 15721254
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors.
    Aprelikova O; Chandramouli GV; Wood M; Vasselli JR; Riss J; Maranchie JK; Linehan WM; Barrett JC
    J Cell Biochem; 2004 Jun; 92(3):491-501. PubMed ID: 15156561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.