BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1894610)

  • 21. A new non-photoreducible protochlorophyll(ide-)-protein: P-649--642 from cucumber cotyledons: NADPH mediation of its transformation to photoreducible P-657--650.
    El Hamouri B; Sironval C
    FEBS Lett; 1979 Jul; 103(2):345-7. PubMed ID: 38146
    [No Abstract]   [Full Text] [Related]  

  • 22. The regulation of enzymes involved in chlorophyll biosynthesis.
    Reinbothe S; Reinbothe C
    Eur J Biochem; 1996 Apr; 237(2):323-43. PubMed ID: 8647070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Simple Method for Quantification of Protochlorophyllide in Etiolated Arabidopsis Seedlings.
    Terry MJ; Kacprzak SM
    Methods Mol Biol; 2019; 2026():169-177. PubMed ID: 31317412
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chloroplast biogenesis, XXVII. Detection of novel chlorophyll and chlorophyll precursors in higher plants.
    Belanger FC; Rebeiz CA
    Biochem Biophys Res Commun; 1979 May; 88(2):365-71. PubMed ID: 313794
    [No Abstract]   [Full Text] [Related]  

  • 25. Wavelength-dependent photooxidation and photoreduction of protochlorophyllide and protochlorophyll in the innermost leaves of cabbage (Brassica oleracea var. capitata L.).
    Erdei AL; Kósa A; Kovács-Smirová L; Böddi B
    Photosynth Res; 2016 Apr; 128(1):73-83. PubMed ID: 26519365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chloroplast biogenesis: quantitative determination of monovinyl and divinyl chlorophyll(ide) a and b by spectrofluorometry.
    Wu SM; Mayasich JM; Rebeiz CA
    Anal Biochem; 1989 May; 178(2):294-300. PubMed ID: 2751091
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Compositional heterogeneity of protochlorophyllide ester in etiolated leaves of higher plants.
    Shioi Y; Sasa T
    Arch Biochem Biophys; 1983 Jan; 220(1):286-92. PubMed ID: 6830239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protochlorophyllide and protochlorophyll in model membranes - an influence of hydrophobic side chain moiety.
    Mysliwa-Kurdziel B; Kruk J; Strzałka K
    Biochim Biophys Acta; 2013 Mar; 1828(3):1075-82. PubMed ID: 23261391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of Light-dependent Oxygen Uptake, Protochlorophyll(ide)-650 Photoconversion, and Chlorophyll Disappearance in Wheat Etioplasts.
    Redlinger TE; McDaniel RG
    Plant Physiol; 1978 Jun; 61(6):1006-9. PubMed ID: 16660405
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphorescence of protochlorophyll(ide) and chlorophyll(ide) in etiolated and greening bean leaves : Assignment of spectral bands.
    Lebedev NN; Krasnovsky AA; Litvin FF
    Photosynth Res; 1991 Oct; 30(1):7-14. PubMed ID: 24415189
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential distribution of chlorophyll biosynthetic intermediates in stroma, envelope and thylakoid membranes in Beta vulgaris.
    Mohapatra A; Tripathy BC
    Photosynth Res; 2007; 94(2-3):401-10. PubMed ID: 17638115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectroscopic properties of protochlorophyllide analyzed in situ in the course of etiolation and in illuminated leaves.
    Schoefs B; Bertrand M; Franck F
    Photochem Photobiol; 2000 Jul; 72(1):85-93. PubMed ID: 10911732
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optical properties of bud scales and protochlorophyll(ide) forms in leaf primordia of closed and opened buds.
    Solymosi K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1075-85. PubMed ID: 16651257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chlorophyll alpha synthesis upon interruption and deletion of por coding for the light-dependent NADPH: protochlorophyllide oxidoreductase in a photosystem-I-less/chlL- strain of Synechocystis sp. PCC 6803.
    He Q; Brune D; Nieman R; Vermaas W
    Eur J Biochem; 1998 Apr; 253(1):161-72. PubMed ID: 9578474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chloroplast biogenesis. Net synthesis of protochlorophyllide from protoporphyrin IX by developing chloroplasts.
    Mattheis JR; Rebeiz CA
    J Biol Chem; 1977 Dec; 252(23):8347-9. PubMed ID: 924999
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phototransformation of monovinyl and divinyl protochlorophyllide by NADPH:protochlorophyllide oxidoreductase of barley expressed in Escherichia coli.
    Knaust R; Seyfried B; Schmidt L; Schulz R; Senger H
    J Photochem Photobiol B; 1993 Oct; 20(2-3):161-6. PubMed ID: 8271116
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transient etiolation: protochlorophyll(ide) and chlorophyll forms in differentiating plastids of closed and breaking leaf buds of horse chestnut (Aesculus hippocastanum).
    Solymosi K; Bóka K; Böddi B
    Tree Physiol; 2006 Aug; 26(8):1087-96. PubMed ID: 16651258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protochlorophyll biosynthesis in a cell-free system from higher plants.
    Rebeiz CA; Castelfranco PA
    Plant Physiol; 1971 Jan; 47(1):24-32. PubMed ID: 5543781
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoactive Subunits of Protochlorophyll(ide) Holochrome.
    Henningsen KW; Kahn A
    Plant Physiol; 1971 May; 47(5):685-90. PubMed ID: 16657685
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Correlated Appearance of Prolamellar Bodies, Protochlorophyll(ide) Species, and the Shibata Shift during Development of Bean Etioplasts in the Dark.
    Klein S; Schiff JA
    Plant Physiol; 1972 Apr; 49(4):619-26. PubMed ID: 16658012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.