These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 1894614)

  • 1. Fenton chemistry. Amino acid oxidation.
    Stadtman ER; Berlett BS
    J Biol Chem; 1991 Sep; 266(26):17201-11. PubMed ID: 1894614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions.
    Stadtman ER
    Annu Rev Biochem; 1993; 62():797-821. PubMed ID: 8352601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Manganese(II) catalyzes the bicarbonate-dependent oxidation of amino acids by hydrogen peroxide and the amino acid-facilitated dismutation of hydrogen peroxide.
    Berlett BS; Chock PB; Yim MB; Stadtman ER
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):389-93. PubMed ID: 2296594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants.
    Subramanian G; Madras G
    Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction.
    Hug SJ; Leupin O
    Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate.
    Illés E; Mizrahi A; Marks V; Meyerstein D
    Free Radic Biol Med; 2019 Feb; 131():1-6. PubMed ID: 30458276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone.
    Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ
    Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fenton activity of iron(III) in the presence of deferiprone.
    Devanur LD; Neubert H; Hider RC
    J Pharm Sci; 2008 Apr; 97(4):1454-67. PubMed ID: 17724662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of Dihydroquercetin on Catalytic Activity of Iron (II) Ions in the Fenton Reaction.
    Babenkova IV; Osipov AN; Teselkin YO
    Bull Exp Biol Med; 2018 Jul; 165(3):347-350. PubMed ID: 30006874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Fe
    Illés E; Patra SG; Marks V; Mizrahi A; Meyerstein D
    J Inorg Biochem; 2020 May; 206():111018. PubMed ID: 32050088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quinolinic acid-iron(ii) complexes: slow autoxidation, but enhanced hydroxyl radical production in the Fenton reaction.
    Pláteník J; Stopka P; Vejrazka M; Stípek S
    Free Radic Res; 2001 May; 34(5):445-59. PubMed ID: 11378528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition.
    Bolobajev J; Trapido M; Goi A
    Chemosphere; 2016 Jun; 153():220-6. PubMed ID: 27016818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction.
    Thomas C; Vile GF; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of ascorbate-dependent, iron-catalyzed lipid peroxidation.
    Miller DM; Aust SD
    Arch Biochem Biophys; 1989 May; 271(1):113-9. PubMed ID: 2712569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydroxyl radical yields in the Fenton process under various pH, ligand concentrations and hydrogen peroxide/Fe(II) ratios.
    Fischbacher A; von Sonntag C; Schmidt TC
    Chemosphere; 2017 Sep; 182():738-744. PubMed ID: 28531840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese(II)-bicarbonate-mediated catalytic activity for hydrogen peroxide dismutation and amino acid oxidation: detection of free radical intermediates.
    Yim MB; Berlett BS; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):394-8. PubMed ID: 2153299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fenton degradation of tetrachloroethene and hexachloroethane in Fe(II) catalyzed systems.
    Jho EH; Singhal N; Turner S
    J Hazard Mater; 2010 Dec; 184(1-3):234-240. PubMed ID: 20817400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The intracellular iron sensor calcein is catalytically oxidatively degraded by iron(II) in a hydrogen peroxide-dependent reaction.
    Hasinoff BB
    J Inorg Biochem; 2003 Jun; 95(2-3):157-64. PubMed ID: 12763660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.