BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 18946988)

  • 41. Isolation, culture and biological characteristics of multipotent porcine skeletal muscle satellite cells.
    Yang J; Liu H; Wang K; Li L; Yuan H; Liu X; Liu Y; Guan W
    Cell Tissue Bank; 2017 Dec; 18(4):513-525. PubMed ID: 28255772
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Neonatal Satellite Cells Form Small Myotubes In Vitro.
    Carvajal Monroy PL; Grefte S; Kuijpers-Jagtman AM; Von den Hoff JW; Wagener FA
    J Dent Res; 2017 Mar; 96(3):331-338. PubMed ID: 27856964
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Culturing muscle fibres in hanging drop: a novel approach to solve an old problem.
    Archacka K; Pozzobon M; Repele A; Rossi CA; Campanella M; De Coppi P
    Biol Cell; 2014 Feb; 106(2):72-82. PubMed ID: 24405025
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Muscle satellite cell-specific genes identified by genetic profiling of MyoD-deficient myogenic cell.
    Seale P; Ishibashi J; Holterman C; Rudnicki MA
    Dev Biol; 2004 Nov; 275(2):287-300. PubMed ID: 15501219
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Primary Murine Myotubes as a Model for Investigating Muscular Dystrophy.
    Smolina N; Kostareva A; Bruton J; Karpushev A; Sjoberg G; Sejersen T
    Biomed Res Int; 2015; 2015():594751. PubMed ID: 26380282
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Developmental potential of rat L6 myoblasts in vivo following injection into regenerating muscles.
    Pin CL; Merrifield PA
    Dev Biol; 1997 Aug; 188(1):147-66. PubMed ID: 9245519
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism.
    Nehlin JO; Just M; Rustan AC; Gaster M
    Biogerontology; 2011 Aug; 12(4):349-65. PubMed ID: 21512720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Retained differentiation capacity of human skeletal muscle satellite cells from spinal cord-injured individuals.
    Savikj M; Ruby MA; Kostovski E; Iversen PO; Zierath JR; Krook A; Widegren U
    Physiol Rep; 2018 Jun; 6(12):e13739. PubMed ID: 29906337
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sera from young and older humans equally sustain proliferation and differentiation of human myoblasts.
    George T; Velloso CP; Alsharidah M; Lazarus NR; Harridge SD
    Exp Gerontol; 2010 Nov; 45(11):875-81. PubMed ID: 20688143
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mouse CD146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential.
    Mierzejewski B; Grabowska I; Jackowski D; Irhashava A; Michalska Z; Stremińska W; Jańczyk-Ilach K; Ciemerych MA; Brzoska E
    Stem Cell Res Ther; 2020 Aug; 11(1):341. PubMed ID: 32762770
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leucine/glutamic acid/lysine protein 1 is localized to subsets of myonuclei in bovine muscle fibers and satellite cells.
    Ouellette SE; Li J; Sun W; Tsuda S; Walker DK; Hersom MJ; Johnson SE
    J Anim Sci; 2009 Oct; 87(10):3134-41. PubMed ID: 19542507
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Enhancement of satellite cell differentiation and functional recovery in injured skeletal muscle by hyperbaric oxygen treatment.
    Horie M; Enomoto M; Shimoda M; Okawa A; Miyakawa S; Yagishita K
    J Appl Physiol (1985); 2014 Jan; 116(2):149-55. PubMed ID: 24336879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Primary rat muscle progenitor cells have decreased proliferation and myotube formation during passages.
    Machida S; Spangenburg EE; Booth FW
    Cell Prolif; 2004 Aug; 37(4):267-77. PubMed ID: 15245563
    [TBL] [Abstract][Full Text] [Related]  

  • 54. BMP signaling regulates satellite cell-dependent postnatal muscle growth.
    Stantzou A; Schirwis E; Swist S; Alonso-Martin S; Polydorou I; Zarrouki F; Mouisel E; Beley C; Julien A; Le Grand F; Garcia L; Colnot C; Birchmeier C; Braun T; Schuelke M; Relaix F; Amthor H
    Development; 2017 Aug; 144(15):2737-2747. PubMed ID: 28694257
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo activation of STAT3 signaling in satellite cells and myofibers in regenerating rat skeletal muscles.
    Kami K; Senba E
    J Histochem Cytochem; 2002 Dec; 50(12):1579-89. PubMed ID: 12486080
    [TBL] [Abstract][Full Text] [Related]  

  • 56. beta-Catenin promotes self-renewal of skeletal-muscle satellite cells.
    Perez-Ruiz A; Ono Y; Gnocchi VF; Zammit PS
    J Cell Sci; 2008 May; 121(Pt 9):1373-82. PubMed ID: 18397993
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estrogen influences satellite cell activation and proliferation following downhill running in rats.
    Enns DL; Tiidus PM
    J Appl Physiol (1985); 2008 Feb; 104(2):347-53. PubMed ID: 18096757
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The expression patterns of Pax7 in satellite cells during overload-induced rat adult skeletal muscle hypertrophy.
    Ishido M; Uda M; Kasuga N; Masuhara M
    Acta Physiol (Oxf); 2009 Apr; 195(4):459-69. PubMed ID: 18808442
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Dormancy and quiescence of skeletal muscle stem cells.
    Rocheteau P; Vinet M; Chretien F
    Results Probl Cell Differ; 2015; 56():215-35. PubMed ID: 25344673
    [TBL] [Abstract][Full Text] [Related]  

  • 60. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.