BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

590 related articles for article (PubMed ID: 18947149)

  • 41. Nanofluidic technology for biomolecule applications: a critical review.
    Napoli M; Eijkel JC; Pennathur S
    Lab Chip; 2010 Apr; 10(8):957-85. PubMed ID: 20358103
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Revisited BIA-MS combination: entire "on-a-chip" processing leading to the proteins identification at low femtomole to sub-femtomole levels.
    Boireau W; Rouleau A; Lucchi G; Ducoroy P
    Biosens Bioelectron; 2009 Jan; 24(5):1121-7. PubMed ID: 18829299
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical simulation of polymerization in interdigital multilamination micromixers.
    Serra C; Sary N; Schlatter G; Hadziioannou G; Hessel V
    Lab Chip; 2005 Sep; 5(9):966-73. PubMed ID: 16100581
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanofluidic channels fabrication and manipulation of DNA molecules.
    Wang K; Yue S; Wang L; Jin A; Gu C; Wang P; Wang H; Xu X; Wang Y; Niu H
    IEE Proc Nanobiotechnol; 2006 Feb; 153(1):11-5. PubMed ID: 16480321
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.
    Hartmann DM; Nevill JT; Pettigrew KI; Votaw G; Kung PJ; Crenshaw HC
    Lab Chip; 2008 Apr; 8(4):609-16. PubMed ID: 18369517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Micro- and nanomechanical sensors for environmental, chemical, and biological detection.
    Waggoner PS; Craighead HG
    Lab Chip; 2007 Oct; 7(10):1238-55. PubMed ID: 17896006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FRET for lab-on-a-chip devices - current trends and future prospects.
    Varghese SS; Zhu Y; Davis TJ; Trowell SC
    Lab Chip; 2010 Jun; 10(11):1355-64. PubMed ID: 20480105
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Miniaturized continuous flow reaction vessels: influence on chemical reactions.
    Brivio M; Verboom W; Reinhoudt DN
    Lab Chip; 2006 Mar; 6(3):329-44. PubMed ID: 16511615
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opto-electrokinetic manipulation for high-performance on-chip bioassays.
    Kwon JS; Ravindranath SP; Kumar A; Irudayaraj J; Wereley ST
    Lab Chip; 2012 Dec; 12(23):4955-9. PubMed ID: 23099738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nano-biopower supplies for biomolecular motors: the use of metabolic pathway-based fuel generating systems in microfluidic devices.
    Wasylycia JR; Sapelnikova S; Jeong H; Dragoljic J; Marcus SL; Harrison DJ
    Lab Chip; 2008 Jun; 8(6):979-82. PubMed ID: 18497920
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanointerstice-driven microflow.
    Chung S; Yun H; Kamm RD
    Small; 2009 Mar; 5(5):609-13. PubMed ID: 19226594
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dose-dependent cell-based assays in V-shaped microfluidic channels.
    Li CW; Yang J; Yang M
    Lab Chip; 2006 Jul; 6(7):921-9. PubMed ID: 16804597
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lab-on-a-chip in vitro compartmentalization technologies for protein studies.
    Zhu Y; Power BE
    Adv Biochem Eng Biotechnol; 2008; 110():81-114. PubMed ID: 18594785
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Live cells-based cytotoxic sensorchip fabricated in a microfluidic system.
    Wada K; Taniguchi A; Kobayashi J; Yamato M; Okano T
    Biotechnol Bioeng; 2008 Apr; 99(6):1513-7. PubMed ID: 18080341
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical detection in microfluidic systems.
    Mogensen KB; Kutter JP
    Electrophoresis; 2009 Jun; 30 Suppl 1():S92-100. PubMed ID: 19517511
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Monitoring single-cell infectivity from virus-particle nanoarrays fabricated by parallel dip-pen nanolithography.
    Vega RA; Shen CK; Maspoch D; Robach JG; Lamb RA; Mirkin CA
    Small; 2007 Sep; 3(9):1482-5. PubMed ID: 17694589
    [No Abstract]   [Full Text] [Related]  

  • 57. Femtosecond laser rapid prototyping of nanoshells and suspending components towards microfluidic devices.
    Wu D; Chen QD; Niu LG; Wang JN; Wang J; Wang R; Xia H; Sun HB
    Lab Chip; 2009 Aug; 9(16):2391-4. PubMed ID: 19636471
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vertical arrays of nanofluidic channels fabricated without nanolithography.
    Sordan R; Miranda A; Traversi F; Colombo D; Chrastina D; Isella G; Masserini M; Miglio L; Kern K; Balasubramanian K
    Lab Chip; 2009 Jun; 9(11):1556-60. PubMed ID: 19458862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Application of microfluidic-chip in biomedicine].
    Bi YN; Zhang HJ
    Sheng Wu Gong Cheng Xue Bao; 2006 Jan; 22(1):167-71. PubMed ID: 16572859
    [TBL] [Abstract][Full Text] [Related]  

  • 60. On-chip cell migration assay using microfluidic channels.
    Nie FQ; Yamada M; Kobayashi J; Yamato M; Kikuchi A; Okano T
    Biomaterials; 2007 Sep; 28(27):4017-22. PubMed ID: 17583787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 30.