These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 18947198)

  • 1. Electroosmotic flow and its contribution to iontophoretic delivery.
    Herr NR; Kile BM; Carelli RM; Wightman RM
    Anal Chem; 2008 Nov; 80(22):8635-41. PubMed ID: 18947198
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing presynaptic regulation of extracellular dopamine with iontophoresis.
    Herr NR; Daniel KB; Belle AM; Carelli RM; Wightman RM
    ACS Chem Neurosci; 2010 Jul; 1(9):627-638. PubMed ID: 21060714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring electroosmotic flow in microchips and capillaries.
    Gilman SD; Chapman PJ
    Methods Mol Biol; 2006; 339():187-202. PubMed ID: 16790874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of iontophoretic drug delivery from micropipettes.
    Kirkpatrick DC; Walton LR; Edwards MA; Wightman RM
    Analyst; 2016 Mar; 141(6):1930-8. PubMed ID: 26890395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A two-step method for rapid characterization of electroosmotic flows in capillary electrophoresis.
    Zhang W; He M; Yuan T; Xu W
    Electrophoresis; 2017 Dec; 38(24):3130-3135. PubMed ID: 28869669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of electroosmotic and electrophoretic mobilization in capillary and microchip isoelectric focusing.
    Thormann W; Caslavska J; Mosher RA
    J Chromatogr A; 2007 Jul; 1155(2):154-63. PubMed ID: 17307189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility-based selective on-line preconcentration of proteins in capillary electrophoresis by controlling electroosmotic flow.
    Wang Q; Yue B; Lee ML
    J Chromatogr A; 2004 Jan; 1025(1):139-46. PubMed ID: 14753681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of electroosmotic flow in capillary and microchip electrophoresis.
    Wang W; Zhou F; Zhao L; Zhang JR; Zhu JJ
    J Chromatogr A; 2007 Nov; 1170(1-2):1-8. PubMed ID: 17915240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the poor iontophoretic transport of lysozyme across the skin: when high charge and high electrophoretic mobility are not enough.
    Dubey S; Kalia YN
    J Control Release; 2014 Jun; 183():35-42. PubMed ID: 24657950
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of electroosmotic markers in aqueous and nonaqueous capillary electrophoresis.
    Hellqvist A; Hedeland Y; Pettersson C
    Electrophoresis; 2013 Dec; 34(24):3252-9. PubMed ID: 24123115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transungual iontophoretic transport of polar neutral and positively charged model permeants: effects of electrophoresis and electroosmosis.
    Hao J; Li SK
    J Pharm Sci; 2008 Feb; 97(2):893-905. PubMed ID: 17683062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Key factors in the control of electroosmosis with external radial electric field in CE].
    Zhu Y; Chen Y
    Se Pu; 1999 Nov; 17(6):525-8. PubMed ID: 12552682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control of the EOF in CE using polyelectrolytes of different charge densities.
    Danger G; Ramonda M; Cottet H
    Electrophoresis; 2007 Mar; 28(6):925-31. PubMed ID: 17309049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts.
    Křížek T; Kubíčková A; Hladílková J; Coufal P; Heyda J; Jungwirth P
    Electrophoresis; 2014 Mar; 35(5):617-24. PubMed ID: 24338984
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro permeability of a model protein across ocular tissues and effect of iontophoresis on the transscleral delivery.
    Tratta E; Pescina S; Padula C; Santi P; Nicoli S
    Eur J Pharm Biopharm; 2014 Sep; 88(1):116-22. PubMed ID: 24816128
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electroosmotic flow modulation for improved electrokinetic preconcentration: Application to capillary electrophoresis of fluorescent magnetic nanoparticles.
    Nguyen NVT; Smadja C; Taverna M; El Mousli S; Secret E; Siaugue JM; Nguyen LTH; Mai TD
    Anal Chim Acta; 2021 May; 1161():338466. PubMed ID: 33896565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of asymmetric donor-receiver ion concentration upon transscleral iontophoretic transport.
    Li SK; Zhang Y; Zhu H; Higuchi WI; White HS
    J Pharm Sci; 2005 Apr; 94(4):847-60. PubMed ID: 15736190
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of PVP on the electroosmotic mobility of wet-etched glass microchannels.
    Milanova D; Chambers RD; Bahga SS; Santiago JG
    Electrophoresis; 2012 Nov; 33(21):3259-62. PubMed ID: 23065690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled iontophoretic delivery of pramipexole: electrotransport kinetics in vitro and in vivo.
    Kalaria DR; Patel P; Merino V; Patravale VB; Kalia YN
    Eur J Pharm Biopharm; 2014 Sep; 88(1):56-63. PubMed ID: 24525072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reverse iontophoresis generated by porous microneedles produces an electroosmotic flow for glucose determination.
    He QY; Zhao JH; Du SM; Li DG; Luo ZW; You XQ; Liu J
    Talanta; 2024 Jan; 267():125156. PubMed ID: 37703780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.