These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

20 related articles for article (PubMed ID: 18947834)

  • 1. Analytical description of elastocapillary membranes held by needles.
    Farago J; Drenckhan-Andreatta W
    Soft Matter; 2024 Jun; 20(24):4707-4714. PubMed ID: 38833263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Capillary Forces Using Two Fibers Dynamically Withdrawn from a Liquid: Evidence for an Enhanced Cheerios Effect.
    Bense H; SiƩfert E; Brau F
    Phys Rev Lett; 2023 Nov; 131(18):184003. PubMed ID: 37977619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastocapillary menisci mediate interaction of neighboring structures at the surface of a compliant solid.
    Molefe L; Kolinski JM
    Phys Rev E; 2023 Oct; 108(4):L043001. PubMed ID: 37978591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Negative pressure characteristics of an evaporating meniscus at nanoscale.
    Maroo SC; Chung J
    Nanoscale Res Lett; 2011 Jan; 6(1):72. PubMed ID: 21711621
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of the capillary condensation time of a water nanobridge.
    Vitorino MV; Vieira A; Marques CA; Rodrigues MS
    Sci Rep; 2018 Sep; 8(1):13848. PubMed ID: 30217989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate measurement of liquid transport through nanoscale conduits.
    Alibakhshi MA; Xie Q; Li Y; Duan C
    Sci Rep; 2016 Apr; 6():24936. PubMed ID: 27112404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-curvature liquid meniscus in a nanochannel: evidence of interplay between intermolecular and surface forces.
    Kim P; Kim HY; Kim JK; Reiter G; Suh KY
    Lab Chip; 2009 Nov; 9(22):3255-60. PubMed ID: 19865733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force.
    Han A; Mondin G; Hegelbach NG; de Rooij NF; Staufer U
    J Colloid Interface Sci; 2006 Jan; 293(1):151-7. PubMed ID: 16023663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Capillary negative pressure measured by nanochannel collapse.
    Tas NR; Escalante M; van Honschoten JW; Jansen HV; Elwenspoek M
    Langmuir; 2010 Feb; 26(3):1473-6. PubMed ID: 20047328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wetting of a particle in a thin film.
    Fiegel J; Jin F; Hanes J; Stebe K
    J Colloid Interface Sci; 2005 Nov; 291(2):507-14. PubMed ID: 15946673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of coupled menisci shapes by Young-Laplace equation and the resultant variability in capillary retention.
    Chatterjee J
    J Colloid Interface Sci; 2007 Oct; 314(1):199-206. PubMed ID: 17568603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of liquid menisci in flexible nanochannels.
    van Honschoten JW; Escalante M; Tas NR; Elwenspoek M
    J Colloid Interface Sci; 2009 Jan; 329(1):133-9. PubMed ID: 18947834
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 14.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 15.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 16.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 1.