BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 18947901)

  • 1. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata).
    Sairam RK; Dharmar K; Chinnusamy V; Meena RC
    J Plant Physiol; 2009 Apr; 166(6):602-16. PubMed ID: 18947901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes.
    Chakraborty K; Sairam RK; Bhattacharya RC
    Plant Physiol Biochem; 2012 Feb; 51():90-101. PubMed ID: 22153244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Yield, growth and physiological responses of mung bean [Vigna radiata (L.) Wilczek] genotypes to waterlogging at vegetative stage.
    Kumar P; Pal M; Joshi R; Sairam RK
    Physiol Mol Biol Plants; 2013 Apr; 19(2):209-20. PubMed ID: 24431488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interdependence of plant water status with photosynthetic performance and root defense responses in Vigna radiata (L.) Wilczek under progressive drought stress and recovery.
    Sengupta D; Guha A; Reddy AR
    J Photochem Photobiol B; 2013 Oct; 127():170-81. PubMed ID: 24050991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global gene expression in cotton (Gossypium hirsutum L.) leaves to waterlogging stress.
    Zhang Y; Kong X; Dai J; Luo Z; Li Z; Lu H; Xu S; Tang W; Zhang D; Li W; Xin C; Dong H
    PLoS One; 2017; 12(9):e0185075. PubMed ID: 28953908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.).
    Christianson JA; Llewellyn DJ; Dennis ES; Wilson IW
    Plant Cell Physiol; 2010 Jan; 51(1):21-37. PubMed ID: 19923201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of antioxidant and anaerobic metabolism enzymes in providing tolerance to maize (Zea mays L.) seedlings against waterlogging.
    Chugh V; Kaur N; Gupta AK
    Indian J Biochem Biophys; 2011 Oct; 48(5):346-52. PubMed ID: 22165294
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of an alcohol dehydrogenase cDNA from and characterization of its expression in chrysanthemum under waterlogging.
    Yin D; Ni D; Song L; Zhang Z
    Plant Sci; 2013 Nov; 212():48-54. PubMed ID: 24094053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salicylic acid alleviates decreases in photosynthesis under salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differentially in two mungbean cultivars.
    Nazar R; Iqbal N; Syeed S; Khan NA
    J Plant Physiol; 2011 May; 168(8):807-15. PubMed ID: 21112120
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ALA Pretreatment Improves Waterlogging Tolerance of Fig Plants.
    An Y; Qi L; Wang L
    PLoS One; 2016; 11(1):e0147202. PubMed ID: 26789407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. VrDREB2A, a DREB-binding transcription factor from Vigna radiata, increased drought and high-salt tolerance in transgenic Arabidopsis thaliana.
    Chen H; Liu L; Wang L; Wang S; Cheng X
    J Plant Res; 2016 Mar; 129(2):263-73. PubMed ID: 26646381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription factors AcERF74/75 respond to waterlogging stress and trigger alcoholic fermentation-related genes in kiwifruit.
    Liu J; Chen Y; Wang WQ; Liu JH; Zhu CQ; Zhong YP; Zhang HQ; Liu XF; Yin XR
    Plant Sci; 2022 Jan; 314():111115. PubMed ID: 34895544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global gene expression responses to waterlogging in leaves of rape seedlings.
    Lee YH; Kim KS; Jang YS; Hwang JH; Lee DH; Choi IH
    Plant Cell Rep; 2014 Feb; 33(2):289-99. PubMed ID: 24384821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remediation of arsenic in mung bean (Vigna radiata) with growth enhancement by unique arsenic-resistant bacterium Acinetobacter lwoffii.
    Das J; Sarkar P
    Sci Total Environ; 2018 May; 624():1106-1118. PubMed ID: 29625525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Waterlogging during the reproductive growth stage causes physiological and biochemical modifications in the leaves of cowpea (Vigna unguiculata L.) genotypes with contrasting tolerance.
    Olorunwa OJ; Adhikari B; Brazel S; Popescu SC; Popescu GV; Shi A; Barickman TC
    Plant Physiol Biochem; 2022 Nov; 190():133-144. PubMed ID: 36115267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Prunus rootstock somaclonal variants with divergent ability to tolerate waterlogging.
    Pistelli L; Iacona C; Miano D; Cirilli M; Colao MC; Mensuali-Sodi A; Muleo R
    Tree Physiol; 2012 Mar; 32(3):355-68. PubMed ID: 22391010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochar and lignite affect H
    Torabian S; Farhangi-Abriz S; Rathjen J
    Plant Physiol Biochem; 2018 Aug; 129():141-149. PubMed ID: 29879587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A growth analysis of waterlogging damage in mung bean (Phaseolus aureus).
    Musgrave ME; Vanhoy MA
    Can J Bot; 1989; 67():2391-5. PubMed ID: 11537665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Linking waterlogging tolerance with Mn²⁺ toxicity: a case study for barley.
    Huang X; Shabala S; Shabala L; Rengel Z; Wu X; Zhang G; Zhou M
    Plant Biol (Stuttg); 2015 Jan; 17(1):26-33. PubMed ID: 24985051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage.
    Olorunwa OJ; Adhikari B; Shi A; Barickman TC
    Plant Sci; 2022 Feb; 315():111136. PubMed ID: 35067306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.